low pressure systems
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 39)

H-INDEX

18
(FIVE YEARS 2)

MAUSAM ◽  
2021 ◽  
Vol 64 (2) ◽  
pp. 265-280
Author(s):  
MEHFOOZ ALI MEHFOOZALI ◽  
U.P. SINGH ◽  
D. JOARDAR ◽  
NIZAMUDDIN NIZAMUDDIN

vR;f/kd o"kkZ gksus ds dkj.k HkwL[kyu gksrk gS vDlekr ck<+ vk tkrh gS vkSj Qly dks {kfr igq¡prh gSA lekt] vFkZO;oLFkk vkSj i;kZoj.k ij bldk cgqr nq"izHkko iM+rk gSA i;kZoj.kh; vkSj flukWfIVd fLFkfr;ksa ds mRiUu gksus ls  vR;f/kd vFkok cgqr Hkkjh o"kkZ gksus ds dkj.k Hkkjr esa nf{k.k if’peh ekulwu _rq ds nkSjku vf/kdk¡’kr% ck<+ vkrh gSA bl 'kks/k i= esa izeq[k flukWfIVd dkj.kksa dk irk yxkus dk iz;kl fd;k x;k gS tks y?kq vof/k iwokZuqeku ds {ks= esa fodflr iwokZuqeku rduhd vkSj vk/kqfud izs{k.kkRed izkS|ksfxdh ij vk/kkfjr o"kZ 1998&2010 dh vof/k dh bl o"kkZ  vkSj ok;qeaMyh; iz.kkfy;ksa ds e/; laca/kksa ds fo’ys"k.k ds ek/;e ls ;equk ds fupys tyxzg.k {ks= ¼,y-okbZ-lh-½ esa vR;f/kd Hkkjh o"kkZ dh ?kVukvksa ds fy, mRrjnk;h gSA bl v/;;u ls ;g irk pyk gS fd  bl {ks= esa caxky dh [kkM+h esa fuEu nkc iz.kkfy;ksa dk cuuk izeq[k dkjd gS fuLlansg ;fn LFkkuh; fLFkfr;k¡ izHkkoh gks tSlsa fd xehZ dk c<+uk rks ogk¡ ij Hkkjh o"kkZ gksrh gSA lkekU;r% caxky dh [kkM+h esa fuEu vcnkc iz.kkfy;k¡ ¼pØokr] vonkc] fuEu vonkc {ks= vkfn tSls ¼,y-ih-,l-½ fodflr gqbZ tks if’pe ls mRrjh  if’peh fn’kk dh vksj c<+h rFkk ;equk ds fupys tyxzg.k ¼,y-okbZ-lh-½ {ks= esa igq¡phA ,slh ?kVukvksa ds fy, mRrjnk;h mifjru  ok;q pØokrh ifjlapj.k ¼lkblj½ ds izHkko ls ogha ij ,y- ih- ,l- Hkh cu ldrk gSA ,slh iz.kkyh ls bDds&nwDds LFkkuksa ij vR;f/kd Hkkjh o"kkZ dh ?kVuk,¡ ¼lkekU;r% iz.kkyh ds nf{k.k if’pe {ks= esa½ vkSj dqN LFkkuksa ij Hkkjh ls cgqr Hkkjh o"kkZ gqbZ ftlds dkj.k ck<+ vkbZA ;fn ;equk ds fupys tyxzg.k ¼,y-okbZ-lh-½ {ks= esa ,y-ih-,l- fuf"Ø; ;k /khek iM+ tkrk gS rks bl izdkj dh o"kkZ dh ?kVukvksa dh laHkkouk c<+ ldrh gSA ,y-ih-,l- ds vkxs c<+us dk lgh iwokZuqeku nsus ds fy, vkj-,l-,e-lh- ¼Hkkjr ekSle foKku foHkkx½ ubZ fnYYkh ds iwoZuqeku :i js[kk ds ,u-MCY;w-ih- mRikn@72] 48 vkSj 24 ?kaVksa ds iou pkVZ lgh lk/ku ik, x, gSaA vR;f/kd o"kkZ dh ?kVukvksa ds iwokZuqeku esa bl izdkj dh lwpuk nsus ls iwokZuqekudrkvksa dks fuf’pr :i ls lgh iwokZuqeku feysxk rkfd ftyk izkf/kdkjh le; jgrs vkink dh rS;kjh ds fy, vko’;d ewyHkwr lqfo/kk,¡ miyC/k djk ldsaA  Extreme rainfall results in landslides, flash flood and crop damage that have major impact on society, the economy and the environment. During southwest monsoon season, flood mostly occurs in India due to extremely or very heavy rain that originates from environmental and   synoptic conditions. An attempt has been made to identify the main synoptic reasons, which are responsible for extremely heavy rainfall events over Lower Yamuna catchment (LYC) through the analysis of the relationship between this rainfall and atmospheric systems for the period 1998-2010 based on modern observational technology and developed forecasting technique in the field of short range prediction. The finding of this study show that the major factor have is the arrival of Bay of Bengal low pressure systems in this region, of course if the ascent local conditions such as heat occur, causing the heaviest rains there. The low pressure systems (LPS like, Cyclone, depression, low pressure area etc.) developed generally over Bay of Bengal moved in west to north-westwards direction and reached over the LYC region. Also LPS may be formed in situ under the influence of upper air cyclonic circulation (cycir) responsible for such events. Such system yield extremely heavy rainfall events (generally in the south-west sector of the system) at isolated places and heavy to very heavy rainfall at a few places and there by caused flood situation. The possibility of occurrence of such type of rainfall would be higher if the LPS is either stagnate or slow over LYC region. The NWP products of RSMC (IMD) New Delhi forecast contours / wind charts for 72, 48 & 24 hrs were found good tool for accurate forecast position of the movement of the LPS. Such information certainly facilitate to forecaster in prediction of extreme rainfall events more accurately so that district authorities may set up necessary infrastructures for disaster preparedness in time.


MAUSAM ◽  
2021 ◽  
Vol 49 (3) ◽  
pp. 301-308
Author(s):  
A. B. MAZUMDAR

An attempt has been made towards objective identification of phases of the southwest monsoon by principal component analysis (PCA) in temporal domain (T-mode). The method utilizes the relationship of weekly rainfall activities with principal components (PCs) of southwest monsoon. Based on the relationships, subgroup of weeks with similar spatial patterns have been identified. Synoptic features of these subgroups have been brought out with the help of synoptic charts. The first four significant PCs are associated with four kinds of active phases of the southwest monsoon when the low pressure systems have typical characteristics corresponding to each PC. Thus, the study suggests a method of interpretation of PCs with the help of synoptic charts by objective identification of phases of southwest monsoon.


MAUSAM ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. 699-712
Author(s):  
KULDEEP SHARMA ◽  
RAGHAVENDRA ASHRIT ◽  
R. BHATLA ◽  
R. RAKHI ◽  
G. R. IYENGAR ◽  
...  

Forecasting of heavy rainfall events is still a challenge even for the most advanced state-of-art high resolution NWP modelling systems. Very often the models fail to accurately predict the track and movement of the low pressure systems leading to large spatial errors in the predicted rain. Quantification of errors in forecast rainfall location and amounts is important for forecasters (to choose a forecast and interpret) and modelers for monitoring the impact of changes and improvements in model physics and dynamics configurations. This study aims to quantify and summarize errors in rainfall forecast for heavy rains associated with a Bay of Bengal (BOB) low pressure systems. The verification analysis is based on three heavy rain events during June to September (JJAS) 2015. The performance of the three deterministic models, NCMRWF’s Global Forecast Systems (NGFS), NCMRWF’s Unified Model (NCUM) and Australian Community Climate and Earth-System Simulator – Global (ACCESS-G) in predicting these heavy rainfall events has been analysed. In addition to standard verification metrics like RMSE, ETS, POD and HK Score, this paper also uses new family of scores like EDS (Extreme Dependency Score), EDI (Extremal Dependence Index) and Symmetric EDI with special emphasis on verification of extreme rainfall to bring out the relative performance of the models for these three rainfall events. The results indicate that Unified modeling framework in NCUM and ACCESS-G by and large performs better than NGFS in rainfall forecasts over India specially at higher lead times. Relatively improved skill in NCUM forecasts can be attributed to (i) improved resolution (~17 km) and (ii) END Game dynamics of NCUM.


MAUSAM ◽  
2021 ◽  
Vol 60 (1) ◽  
pp. 25-38
Author(s):  
M. MOHAPATRA ◽  
U. C. MOHANTY

A study has been undertaken to find out different characteristics like frequency, intensity, movement, region of occurrence etc. of low pressure systems (LPS) including low, depression and cyclonic storm etc. developing over Orissa and neighbouring sea and land regions during excess and deficient monsoon  rainfall months (June – September) over Orissa. The study is based on data of 20 years (1980-1999). The principal objective of this study is to find out the contribution of LPS to extreme monsoon rainfall activity over Orissa.   The number of LPS days rather than frequency of formation of LPS over different regions better explain the excess and deficient rainfall over Orissa. The excess rainfall over Orissa during June is not significantly related with the number of LPS days. Significantly less than normal number of LPS days over northwest (NW) Bay of Bengal and Gangetic West Bengal (GWB) and higher number of LPS days over west central (WC) Bay off north coastal Andhra Pradesh (NCAP) cause deficient rainfall over Orissa during June. While significantly higher than normal number of LPS days over NW Bay and Orissa leads to excess rainfall during July, less than normal number of LPS days over WC Bay off NCAP is associated with excess rainfall during August. The less number of LPS days over Orissa due to less frequent movement of LPS across Orissa from the Bay of Bengal leads to deficient rainfall over Orissa during both July and August. Significantly higher/less than normal number of LPS days over NW Bay leads to excess/deficient rainfall over Orissa during September.


MAUSAM ◽  
2021 ◽  
Vol 60 (3) ◽  
pp. 309-316
Author(s):  
D. M. RASE ◽  
M. P. SHEVALE ◽  
S. I. M. RIZVI

Importance of monsoon depressions, Low Pressure Systems (LPS) and the number of LPS days on rainfall and hence indirectly on agriculture and hydrology, is well recognized.      In this paper the pattern of annual variability in these systems have been examined using data from 1901-2000. The above mentioned parameters have been subjected to decadal analysis to detect presence of any regular pattern. An attempt has been made to find its tendency with time.  Impact of these systems on central India rainfall has been determined and discussed.     The study endorses the earlier findings that there is a   decreasing trend in the frequency of depressions which has been compensated with increase in LPS days over Indian region in recent years.  The rainfall over central India is more significantly related with a number of LPS days over Indian region.


2021 ◽  
pp. 1-36
Author(s):  
Akshaya C Nikumbh ◽  
Arindam Chakraborty ◽  
G.S. Bhat ◽  
Dargan M. W. Frierson

AbstractThe sub-seasonal and synoptic-scale variability of the Indian summer monsoon rainfall are controlled primarily by monsoon intra-seasonal oscillations (MISO) and low pressure systems (LPS), respectively. The positive and negative phases of MISO lead to alternate epochs of above-normal (active) and below-normal (break) spells of rainfall. LPSs are embedded within the different phases of MISO and are known to produce heavy precipitation events over central India. Whether the interaction with the MISO phases modulates the precipitation response of LPSs, and thereby the characteristics of extreme rainfall events (EREs) remains unaddressed in the available literature. In this study, we analyze the LPSs that produce EREs of various spatial extents viz., Small, Medium, and Large over central India from 1979 to 2012. We also compare them with the LPSs that pass through central India and do not give any ERE (LPS-noex). We find that thermodynamic characteristics of LPSs that trigger different spatial extents of EREs are similar. However, they show differences in their dynamic characteristics. The ERE producing LPSs are slower, moister and more intense than LPS-noex. The LPSs that lead to Medium and Large EREs tend to occur during the positive phase of MISO when an active monsoon trough is present over central India. On the other hand, LPS-noex and the LPSs that trigger Small EREs occur mainly during the neutral or negative phases of the MISO. The large-scale dynamic forcing, intensification of LPSs, and diabatic generation of low-level potential vorticity due to the presence of active monsoon trough help in the organization of convection and lead to Medium and Large EREs. On the other hand, the LPSs that form during the negative or neutral phases of MISO do not intensify much during their lifetime and trigger scattered convection, leading to EREs of small size.


2021 ◽  
Vol 8 (9) ◽  
Author(s):  
K. S. S. Sai Srujan ◽  
S. Sandeep ◽  
E. Suhas

Sign in / Sign up

Export Citation Format

Share Document