scholarly journals Role of Ural blocking in Arctic sea ice loss and its connection with Arctic warming in winter

2020 ◽  
Author(s):  
Dong-Jae Cho ◽  
Kwang-Yul Kim

AbstractUral blocking (UB) is suggested as one of the contributors to winter sea ice loss in the Barents–Kara Seas (BKS). This study compares UB with Arctic warming (AW) in order to delineate the role of UB on winter sea ice loss and its potential link with AW. A detailed comparison reveals that UB and AW are partly linked on sub-seasonal scales via a two-way interaction; circulation produced by AW affects UB and advection induced by UB affects temperature in AW. On the other hand, the long-term impacts of AW and UB on the sea ice concentration in the BKS are distinct. In AW, strong turbulent flux from the sea surface warms the lower troposphere, increases downward longwave radiation, and broadens the open sea surface. This feedback process explains the substantial sea ice reduction observed in the BKS in association with long-term accelerating trend. Patterns of turbulent flux, net evaporation, and net longwave radiation at surface associated with UB are of opposite signs to those associated with AW, which implies that moisture and heat flux is suppressed as warm and moist air is advected from mid-latitudes. As a result, vertical feedback process is hindered under UB. The qualitative and quantitative differences arise in terms of their impacts on sea ice concentrations in the BKS, because strong turbulent flux from the open sea surface is a main driving force in AW whereas heat and moisture advection is a main forcing in UB.

2016 ◽  
Vol 97 (12) ◽  
pp. S36-S41 ◽  
Author(s):  
Omar Bellprat ◽  
Javier García-Serrano ◽  
Neven S. Fučkar ◽  
François Massonnet ◽  
Virginie Guemas ◽  
...  

2013 ◽  
Vol 14 (2) ◽  
pp. 97-101 ◽  
Author(s):  
Masayo Ogi ◽  
Ignatius G. Rigor

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tsubasa Kodaira ◽  
Takuji Waseda ◽  
Takehiko Nose ◽  
Jun Inoue

AbstractArctic sea ice is rapidly decreasing during the recent period of global warming. One of the significant factors of the Arctic sea ice loss is oceanic heat transport from lower latitudes. For months of sea ice formation, the variations in the sea surface temperature over the Pacific Arctic region were highly correlated with the Pacific Decadal Oscillation (PDO). However, the seasonal sea surface temperatures recorded their highest values in autumn 2018 when the PDO index was neutral. It is shown that the anomalous warm seawater was a rapid ocean response to the southerly winds associated with episodic atmospheric blocking over the Bering Sea in September 2018. This warm seawater was directly observed by the R/V Mirai Arctic Expedition in November 2018 to significantly delay the southward sea ice advance. If the atmospheric blocking forms during the PDO positive phase in the future, the annual maximum Arctic sea ice extent could be dramatically reduced.


2021 ◽  
pp. 301-324
Author(s):  
Avinash Kumar ◽  
Juhi Yadav ◽  
Rohit Srivastava ◽  
Rahul Mohan

1997 ◽  
Vol 25 ◽  
pp. 423-428
Author(s):  
Douglas M. Smith ◽  
Claire Cooper ◽  
Duncan J. Wingham ◽  
Seymour W. Laxon

The amount of Arctic sea ice predicted by the Hadley Centre Global Cilimate Model (GCM) is evaluated using 15 years of passive-microwave data. While the Hadley model reproduces the seasonal cycle reasonably well, it underestimates the total area of sea ice by more than 3 × 106km2for most of the year. In the winter months, most of the underestimate in ice area results from the prediction of far too little ice in Hudson Bay and the Sea of Okhotsk, leading to an excess of up to 0.2 PW heat input to the atmosphere from Hudson Bay alone. The surface-energy budget of Hudson Bay is investigated using a mixture of surface observations (POLES), satellite data (ATSR, SSM/I and ISCCP) and output from the Goddard Data Assimilation Office analysis. Flux adjustments of the order of 200 Wm−2, resulting from anomalously high sea-surface temperatures in the Levitus (1982) climatology, are found to be the cause of the model’s underestimation of sea ice in both Hudson Bay and the Sea of Okhotsk. The fact that flux adjustments based on an inaccurate climatology will produce errors, even if the model physics is correct, underlines the need both for improved climatologies and for models accurate enough not to require flux adjustment.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
M. A. Webster ◽  
C. Parker ◽  
L. Boisvert ◽  
R. Kwok

AbstractIdentifying the mechanisms controlling the timing and magnitude of snow accumulation on sea ice is crucial for understanding snow’s net effect on the surface energy budget and sea-ice mass balance. Here, we analyze the role of cyclone activity on the seasonal buildup of snow on Arctic sea ice using model, satellite, and in situ data over 1979–2016. On average, 44% of the variability in monthly snow accumulation was controlled by cyclone snowfall and 29% by sea-ice freeze-up. However, there were strong spatio-temporal differences. Cyclone snowfall comprised ~50% of total snowfall in the Pacific compared to 83% in the Atlantic. While cyclones are stronger in the Atlantic, Pacific snow accumulation is more sensitive to cyclone strength. These findings highlight the heterogeneity in atmosphere-snow-ice interactions across the Arctic, and emphasize the need to scrutinize mechanisms governing cyclone activity to better understand their effects on the Arctic snow-ice system with anthropogenic warming.


Sign in / Sign up

Export Citation Format

Share Document