Rapid changes in northeastern tropical Pacific Ocean surface salinity due to trans-basin moisture transport in recent decades

2021 ◽  
Author(s):  
Yiling Zheng ◽  
Yan Du ◽  
Jianwei Chi ◽  
Yuhong Zhang ◽  
Shang-Ping Xie
2012 ◽  
Vol 68 (5) ◽  
pp. 687-701 ◽  
Author(s):  
Jian Chen ◽  
Ren Zhang ◽  
Huizan Wang ◽  
Yuzhu An ◽  
Peng Peng ◽  
...  

1996 ◽  
Vol 43 (7) ◽  
pp. 1123-1141 ◽  
Author(s):  
Thierry Delcroix ◽  
Christian Henin ◽  
Véronique Porte ◽  
Phillip Arkin

2021 ◽  
Author(s):  
Huangyuan Shi ◽  
Ling Du

<p>The secular change of ocean salinity is regarded as an indicator of the global water cycle by measuring the surface freshwater flux which is the most important component of earth hydrological budget. Under the effect of remarkable global warming, the surface salinity patterns in ocean basins illustrated that the intensified water cycle resulted in the continuous and significant freshening phenomena in tropical ocean. With the recent boom in salinity measurements and observations, the variability of surface salinity was examined to explore its relationship with anthropogenic warming. In this paper, we found that the salinity varied on the decadal to centurial time scales and responded significantly to the global warming in tropical Pacific Ocean by using the multi-source reanalysis datasets. An unexpected distribution was figured out and what is noteworthy is that, the robust salinification occurred in the central tropic Pacific in the first two decades of 21<sup>st</sup> which was demonstrated by Argo observations. Nevertheless, it did not follow the typical salinity patterns that ‘wet get wetter’ mentioned by several literatures and illustrated a significant trend shift. Similarly, the subsurface ocean salinity revealed the same shift but an opposite tendency to that on surface. It may involve that the controlling influence of surface freshwater reduced and the impact of ocean thermodynamic adjustment became gradually pronounced to the upper ocean. The salinity budget suggested that salinity advection and subsurface entrainment played key roles to induce the reversed trend of salinity change. In addition, the isopycnals variability caused by wind-driven ocean pumping and subtropical gyre may be acted as a trigger of the salinity enhancement in the upper ocean. What’s more, the impact of PDO decadal shift and the moderate global warming was seemed to be the essential factors to change the feedback of ocean-atmosphere processes, potentially and was finally reflected on ocean salinity field.</p>


2010 ◽  
Vol 23 (15) ◽  
pp. 4152-4174 ◽  
Author(s):  
Simon P. de Szoeke ◽  
Christopher W. Fairall ◽  
Daniel E. Wolfe ◽  
Ludovic Bariteau ◽  
Paquita Zuidema

Abstract A new dataset synthesizes in situ and remote sensing observations from research ships deployed to the southeastern tropical Pacific stratocumulus region for 7 years in boreal fall. Surface meteorology, turbulent and radiative fluxes, aerosols, cloud properties, and rawinsonde profiles were measured on nine ship transects along 20°S from 75° to 85°W. Fluxes at the ocean surface are essential to the equilibrium SST. Solar radiation is the only warming net heat flux, with 180–200 W m−2 in boreal fall. The strongest cooling is evaporation (60–100 W m−2), followed by net thermal infrared radiation (30 W m−2) and sensible heat flux (<10 W m−2). The 70 W m−2 imbalance of heating at the surface reflects the seasonal SST tendency and some 30 W m−2 cooling that is mostly due to ocean transport. Coupled models simulate significant SST errors in the eastern tropical Pacific Ocean. Three different observation-based gridded ocean surface flux products agree with ship and buoy observations, while fluxes simulated by 15 Coupled Model Intercomparison Project phase 3 [CMIP3; used for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report] general circulation models have relatively large errors. This suggests the gridded observation-based flux datasets are sufficiently accurate for verifying coupled models. Longwave cooling and solar warming are correlated among model simulations, consistent with cloud radiative forcing and low cloud amount differences. In those simulations with excessive solar heating, elevated SST also results in larger evaporation and longwave cooling to compensate for the solar excess. Excessive turbulent heat fluxes (10–90 W m−2 cooling, mostly evaporation) are the largest errors in simulations once the compensation between solar and longwave radiation is taken into account. In addition to excessive solar warming and evaporation, models simulate too little oceanic residual cooling in the southeastern tropical Pacific Ocean.


2003 ◽  
Vol 30 (10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Gary S. E. Lagerloef ◽  
Roger Lukas ◽  
Fabrice Bonjean ◽  
John T. Gunn ◽  
Gary T. Mitchum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document