Extreme daily precipitation in southern South America: statistical characterization and circulation types using observational datasets and regional climate models

2021 ◽  
Author(s):  
M. E. Olmo ◽  
M. L. Bettolli
2021 ◽  
Author(s):  
Matias Ezequiel Olmo ◽  
Maria Laura Bettolli

<p>Southern South America (SSA) is a wide populated region exposed to extreme rainfall events, which are recognised as some of the major threats in a warming climate. These events produce large impacts on socio-economic activities, energy demand and health systems. Hence, studying this phenomena requires high-quality and high-resolution observational data and model simulations. In this work, the main features of daily extreme precipitation and circulation types over SSA were evaluated using a 4-model set of CORDEX regional climate models (RCMs) driven by ERA-Interim during 1980-2010: RCA4 and WRF from CORDEX Phase 1 and RegCM4v7 and REMO2015 from the brand-new CORDEX-CORE simulations. Observational uncertainty was assessed by comparing model outputs with multiple observational datasets (rain gauges, CHIRPS, CPC and MSWEP). </p><p>The inter-comparison of extreme events, characterized in terms of their intensity, frequency and spatial coverage, varied across SSA exhibiting large differences among observational datasets and RCMs, pointing out the current observational uncertainty when evaluating precipitation extremes, particularly at a daily scale. The spread between observational datasets was smaller than for the RCMs. Most of the RCMs successfully captured the spatial pattern of extreme rainfall across SSA, reproducing the maximum intensities in southeastern South America (SESA) and central and southern Chile during the austral warm (October to March) and cold (April to September) seasons, respectively. However, they often presented overestimations over central and southern Chile, and more variable results in SESA. RegCM4 and WRF seemed to well represent the maximum precipitation amounts over SESA, while REMO showed strong overestimations and RCA4 had more difficulties in representing the spatial distribution of heavy rainfall intensities. Focusing over SESA, differences were detected in the timing and location of extremes (including the areal coverage) among both observational datasets and RCMs, which poses a particular challenge when performing impact studies in the region. Thus, stressing that the use of multiple datasets is of key importance when carrying out regional climate studies and model evaluations, particularly for extremes. </p><p>The synoptic environment was described by a classification of circulation types (CTs) using Self-Organizing Maps (SOM) considering geopotential height anomalies at 500 hPa (Z500). Specific CTs were identified as they significantly enhanced the occurrence of extreme rainfall events in sectorized areas of SESA. In particular, a dipolar structure of Z500 anomalies that produced a marked trough at the mid-level atmosphere, usually located east of the Andes, significantly favoured the occurrence of extreme precipitation events in the warm season. The RCMs were able to adequately reproduce the SOM frequencies, although simplifying the predominant CTs into a reduced number of configurations. They appropriately reproduced the observed extreme precipitation frequencies conditioned by the CTs and their atmospheric configurations, but exhibiting some limitations in the location and intensity of the resulting precipitation systems.</p><p>In this sense, continuous evaluations of observational datasets and model simulations become necessary for a better understanding of the physical mechanisms behind extreme precipitation over the region, as well as for its past and future changes in a climate change scenario.</p>


2021 ◽  
Author(s):  
Juan Sierra ◽  
Jhan Carlo Espinoza ◽  
Clementine Junquas ◽  
Jan Polcher ◽  
Miguel Saavedra ◽  
...  

<p>The Amazon rainforest is a key component of the climate system and one of the main planetary evapotranspiration sources. Over the entire Amazon basin, strong land-atmosphere feedbacks cause almost one third of the regional rainfall to be transpired by the local rainforest. Maximum precipitation recycling ratio takes place on the southwestern edge of the Amazon basin (a.k.a. Amazon-Andes transition region), an area recognized as the rainiest and biologically richest of the whole watershed. Here, high precipitation rates lead to large values of runoff per unit area providing most of the sediment load to Amazon rivers. As a consequence, the transition region can potentially be very sensitive to Amazonian forest loss. In fact, recent acceleration in deforestation rates has been reported over tropical South America. These sustained land-cover changes can alter the regional water and energy balances, as well as the regional circulation and rainfall patterns. In this sense, the use of regional climate models can help to understand the possible impacts of deforestation on the Amazon-Andes zone.</p><p>This work aims to assess the projected Amazonian deforestation effects on the moisture transport and rainfall behavior over tropical South America and the Amazon-Andes transition region. We perform 10-year austral summer simulations with the Weather Research and Forecasting model (WRF) using 3 one-way nested domains. Our finest domain is located over the south-western part of the basin, comprising two instrumented Andean Valleys (Zongo and Coroico river Valleys). Convective permitting high horizontal resolution (1km) is used over this domain. The outcomes presented here enhance the understanding of biosphere-atmosphere coupling and its deforestation induced disturbances.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Silvina A. Solman

This review summarizes the progress achieved on regional climate modeling activities over South America since the early efforts at the beginning of the 2000s until now. During the last 10 years, simulations with regional climate models (RCMs) have been performed for several purposes over the region. Early efforts were mainly focused on sensitivity studies to both physical mechanisms and technical aspects of RCMs. The last developments were focused mainly on providing high-resolution information on regional climate change. This paper describes the most outstanding contributions from the isolated efforts to the ongoing coordinated RCM activities in the framework of the CORDEX initiative, which represents a major endeavor to produce ensemble climate change projections at regional scales and allows exploring the associated range of uncertainties. The remaining challenges in modeling South American climate features are also discussed.


2009 ◽  
Vol 35 (6) ◽  
pp. 1073-1097 ◽  
Author(s):  
Jose A. Marengo ◽  
Tercio Ambrizzi ◽  
Rosmeri P. da Rocha ◽  
Lincoln M. Alves ◽  
Santiago V. Cuadra ◽  
...  

2021 ◽  
Author(s):  
James Ciarlo ◽  
Erika Coppola ◽  
Emanuela Pichelli ◽  
Jose Abraham Torres Alavez ◽  

<p>Downscaling data from General Circulation Models (GCMs) with Regional Climate Models (RCMs) is a computationally expensive process, even more so running at the convection permitting scale (CP). Despite the high-resolution products of these simulations, the Added Value (AV) of these runs compared to their driving models is an important factor for consideration. A new method was recently developed to quantify the AV of historical simulations as well as the Climate Change Downscaling Signal (CCDS) of forecast runs. This method presents these quantities spatially and thus the specific regions with the most AV can be identified and understood.</p><p>An analysis of daily precipitation from a 55-model EURO-CORDEX ensemble (at 12 km resolution) was assessed using this method. It revealed positive AV throughout the domain with greater emphasis in regions of complex topography, coast-lines, and the tropics. Similar CCDS was obtained when assessing the RCP 8.5 far future runs in these domains. This paper looks more closely at the CCDS obtained with this method and compares it to other climate change signals described in other studies.</p><p>The same method is now being applied to assess the AV and CCDS of daily precipitation from an ensemble of models at the CP scale (~3 km) over different domains within Europe. The current stage of the analysis is also looking into the AV of using hourly precipitation instead of daily.</p>


2010 ◽  
Vol 23 (9) ◽  
pp. 2257-2274 ◽  
Author(s):  
Barbara Früh ◽  
Hendrik Feldmann ◽  
Hans-Jürgen Panitz ◽  
Gerd Schädler ◽  
Daniela Jacob ◽  
...  

Abstract To determine return values at various return periods for extreme daily precipitation events over complex orography, an appropriate threshold value and distribution function are required. The return values are calculated using the peak-over-threshold approach in which only a reduced sample of precipitation events exceeding a predefined threshold is analyzed. To fit the distribution function to the sample, the L-moment method is used. It is found that the deviation between the fitted return values and the plotting positions of the ranked precipitation events is smaller for the kappa distribution than for the generalized Pareto distribution. As a second focus, the ability of regional climate models to realistically simulate extreme daily precipitation events is assessed. For this purpose the return values are derived using precipitation events exceeding the 90th percentile of the precipitation time series and a fit of a kappa distribution. The results of climate simulations with two different regional climate models are analyzed for the 30-yr period 1971–2000: the so-called consortium runs performed with the climate version of the Lokal Modell (referred to as the CLM-CR) at 18-km resolution and the Regional Model (REMO)–Umweltbundesamt (UBA) simulations at 10-km resolution. It was found that generally the return values are overestimated by both models. Averaged across the region the overestimation is higher for REMO–UBA compared to CLM-CR.


2003 ◽  
Vol 108 (D3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Christoph Frei ◽  
Jens Hesselbjerg Christensen ◽  
Michel Déqué ◽  
Daniela Jacob ◽  
Richard G. Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document