Comparison of Characteristics and Spatial Distribution Tendency of Daily Precipitation based on the Regional Climate Models for the Korean Peninsula

2015 ◽  
Vol 15 (4) ◽  
pp. 59-70
Author(s):  
Jungho Kim ◽  
Moojong Park ◽  
Jingul Joo
2021 ◽  
Author(s):  
James Ciarlo ◽  
Erika Coppola ◽  
Emanuela Pichelli ◽  
Jose Abraham Torres Alavez ◽  

<p>Downscaling data from General Circulation Models (GCMs) with Regional Climate Models (RCMs) is a computationally expensive process, even more so running at the convection permitting scale (CP). Despite the high-resolution products of these simulations, the Added Value (AV) of these runs compared to their driving models is an important factor for consideration. A new method was recently developed to quantify the AV of historical simulations as well as the Climate Change Downscaling Signal (CCDS) of forecast runs. This method presents these quantities spatially and thus the specific regions with the most AV can be identified and understood.</p><p>An analysis of daily precipitation from a 55-model EURO-CORDEX ensemble (at 12 km resolution) was assessed using this method. It revealed positive AV throughout the domain with greater emphasis in regions of complex topography, coast-lines, and the tropics. Similar CCDS was obtained when assessing the RCP 8.5 far future runs in these domains. This paper looks more closely at the CCDS obtained with this method and compares it to other climate change signals described in other studies.</p><p>The same method is now being applied to assess the AV and CCDS of daily precipitation from an ensemble of models at the CP scale (~3 km) over different domains within Europe. The current stage of the analysis is also looking into the AV of using hourly precipitation instead of daily.</p>


2010 ◽  
Vol 23 (9) ◽  
pp. 2257-2274 ◽  
Author(s):  
Barbara Früh ◽  
Hendrik Feldmann ◽  
Hans-Jürgen Panitz ◽  
Gerd Schädler ◽  
Daniela Jacob ◽  
...  

Abstract To determine return values at various return periods for extreme daily precipitation events over complex orography, an appropriate threshold value and distribution function are required. The return values are calculated using the peak-over-threshold approach in which only a reduced sample of precipitation events exceeding a predefined threshold is analyzed. To fit the distribution function to the sample, the L-moment method is used. It is found that the deviation between the fitted return values and the plotting positions of the ranked precipitation events is smaller for the kappa distribution than for the generalized Pareto distribution. As a second focus, the ability of regional climate models to realistically simulate extreme daily precipitation events is assessed. For this purpose the return values are derived using precipitation events exceeding the 90th percentile of the precipitation time series and a fit of a kappa distribution. The results of climate simulations with two different regional climate models are analyzed for the 30-yr period 1971–2000: the so-called consortium runs performed with the climate version of the Lokal Modell (referred to as the CLM-CR) at 18-km resolution and the Regional Model (REMO)–Umweltbundesamt (UBA) simulations at 10-km resolution. It was found that generally the return values are overestimated by both models. Averaged across the region the overestimation is higher for REMO–UBA compared to CLM-CR.


2003 ◽  
Vol 108 (D3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Christoph Frei ◽  
Jens Hesselbjerg Christensen ◽  
Michel Déqué ◽  
Daniela Jacob ◽  
Richard G. Jones ◽  
...  

2019 ◽  
Vol 58 (2) ◽  
pp. 269-289 ◽  
Author(s):  
Moosup Kim ◽  
Yoo-Bin Yhang ◽  
Chang-Mook Lim

AbstractThe daily precipitation data generated by dynamical models, including regional climate models, generally suffer from biases in distribution and spatial dependence. These are serious flaws if the data are intended to be applied to hydrometeorological studies. This paper proposes a scheme for correcting the biases in both aspects simultaneously. The proposed scheme consists of two steps: an aggregation step and a disaggregation step. The first one aims to obtain a smoothed precipitation pattern that must be retained in correcting the bias, and the second aims to make up for the deficient spatial variation of the smoothed pattern. In both steps, the Gaussian copula plays important roles since it not only provides a feasible way to correct the spatial correlation of model simulations but also can be extended for large-dimension cases by imposing a covariance function on its correlation structure. The proposed scheme is applied to the daily precipitation data generated by a regional climate model. We can verify that the biases are satisfactorily corrected by examining several statistics of the corrected data.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 833
Author(s):  
Ernest Amoussou ◽  
Hervé Awoye ◽  
Henri S. Totin Vodounon ◽  
Salomon Obahoundje ◽  
Pierre Camberlin ◽  
...  

This study characterizes the future changes in extreme rainfall and air temperature in the Mono river basin where the main economic activity is weather dependent and local populations are highly vulnerable to natural hazards, including flood inundations. Daily precipitation and temperature from observational datasets and Regional Climate Models (RCMs) output from REMO, RegCM, HadRM3, and RCA were used to analyze climatic variations in space and time, and fit a GEV model to investigate the extreme rainfalls and their return periods. The results indicate that the realism of the simulated climate in this domain is mainly controlled by the choice of the RCMs. These RCMs projected a 1 to 1.5 °C temperature increase by 2050 while the projected trends for cumulated precipitation are null or very moderate and diverge among models. Contrasting results were obtained for the intense rainfall events, with RegCM and HadRM3 pointing to a significant increase in the intensity of extreme rainfall events. The GEV model is well suited for the prediction of heavy rainfall events although there are uncertainties beyond the 90th percentile. The annual maxima of daily precipitation will also increase by 2050 and could be of benefit to the ecosystem services and socioeconomic activities in the Mono river basin but could also be a threat.


Sign in / Sign up

Export Citation Format

Share Document