scholarly journals Future trends of arctic surface wind speeds and their relationship with sea ice in CMIP5 climate model simulations

2021 ◽  
Author(s):  
Stephen J. Vavrus ◽  
Ramdane Alkama
2021 ◽  
Author(s):  
Stephen Vavrus ◽  
Ramdane Alkama

Abstract Recent climate change in the Arctic has been rapid and dramatic, leading to numerous physical and societal consequences. Many studies have investigated these ongoing and projected future changes across a range of climatic variables, but surprisingly little attention has been paid to wind speed, despite its known importance for sea ice motion, ocean wave heights, and coastal erosion. Here we analyzed future trends in Arctic surface wind speed and its relationship with sea ice cover among CMIP5 global climate models. There is a strong anticorrelation between climatological sea ice concentration and wind speed in the early 21 st -century reference climate, and the vast majority of models simulate widespread future strengthening of surface winds over the Arctic Ocean (annual multi-model mean trend of up to 0.8 m s -1 or 13%). Nearly all models produce an inverse relationship between projected changes in sea ice cover and wind speed, such that grid cells with virtually total ice loss almost always experience stronger winds. Consistent with the largest regional ice losses during autumn and winter, the greatest increases in future wind speeds are expected during these two seasons, with localized strengthening up to 23%. As in other studies, stronger surface winds cannot be attributed to tighter pressure gradients but rather to some combination of weakened atmospheric stability and reduced surface roughness as the surface warms and melts. The intermodel spread of wind speed changes, as expressed by the two most contrasting model results, appears to stem from differences in the treatment of surface roughness.


2016 ◽  
Vol 29 (24) ◽  
pp. 8931-8948 ◽  
Author(s):  
Ariaan Purich ◽  
Matthew H. England ◽  
Wenju Cai ◽  
Yoshimitsu Chikamoto ◽  
Axel Timmermann ◽  
...  

Abstract A strengthening of the Amundsen Sea low from 1979 to 2013 has been shown to largely explain the observed increase in Antarctic sea ice concentration in the eastern Ross Sea and decrease in the Bellingshausen Sea. Here it is shown that while these changes are not generally seen in freely running coupled climate model simulations, they are reproduced in simulations of two independent coupled climate models: one constrained by observed sea surface temperature anomalies in the tropical Pacific and the other by observed surface wind stress in the tropics. This analysis confirms previous results and strengthens the conclusion that the phase change in the interdecadal Pacific oscillation from positive to negative over 1979–2013 contributed to the observed strengthening of the Amundsen Sea low and the associated pattern of Antarctic sea ice change during this period. New support for this conclusion is provided by simulated trends in spatial patterns of sea ice concentrations that are similar to those observed. These results highlight the importance of accounting for teleconnections from low to high latitudes in both model simulations and observations of Antarctic sea ice variability and change.


2016 ◽  
Vol 9 (9) ◽  
pp. 3427-3446 ◽  
Author(s):  
Dirk Notz ◽  
Alexandra Jahn ◽  
Marika Holland ◽  
Elizabeth Hunke ◽  
François Massonnet ◽  
...  

Abstract. A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standard for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. In this contribution, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.


Sign in / Sign up

Export Citation Format

Share Document