scholarly journals Clinical and cardiac magnetic resonance findings in post-COVID patients referred for suspected myocarditis

Author(s):  
Philipp Breitbart ◽  
Alexander Koch ◽  
Marco Schmidt ◽  
Annett Magedanz ◽  
Edelgard Lindhoff-Last ◽  
...  

Abstract Objectives We assessed possible myocardial involvement in previously cardiac healthy post-COVID patients referred for persisting symptoms with suspected myocarditis. Background Prior studies suggested myocardial inflammation in patients with coronavirus-induced disease 2019 (COVID-19). However, the prevalence of cardiac involvement among COVID patients varied between 1.4 and 78%. Methods A total of 56 post-COVID patients without previous heart diseases were included consecutively into this study. All patients had positive antibody titers against SARS-CoV-2. Patients were referred for persistent symptoms such as chest pain/discomfort, shortness of breath, or intolerance to activity. All patients underwent standardized cardiac assessment including electrocardiogram (ECG), cardiac biomarkers, echocardiography, and cardiac magnetic resonance (CMR). Results 56 Patients (46 ± 12 years, 54% females) presented 71 ± 66 days after their COVID-19 disease. In most patients, the course of COVID-19 was mild, with hospital treatment being necessary in five (9%). At presentation, patients most often reported persistent fatigue (75%), chest pain (71%), and shortness of breath (66%). Acute myocarditis was confirmed by T1/T2-weighed CMR and elevated NTpro-BNP levels in a single patient (2%). Left ventricular ejection fraction was 56% in this patient. Additional eight patients (14%) showed suspicious CMR findings, including myocardial edema without fibrosis (n = 3), or non-ischemic myocardial injury suggesting previous inflammation (n = 5). However, myocarditis could ultimately not be confirmed according to 2018 Lake Louise criteria; ECG, echo and lab findings were inconspicuous in all eight patients. Conclusions Among 56 post-COVID patients with persistent thoracic complaints final diagnosis of myocarditis could be confirmed in a single patient using CMR. Graphic abstract

2021 ◽  
Vol 22 (Supplement_2) ◽  
Author(s):  
C Rios-Navarro ◽  
J Gavara ◽  
J Nunez ◽  
C Bonanad Lozano ◽  
E Revuelta-Lopez ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – EU funding. Main funding source(s): This study was funded by “Instituto de Salud Carlos III” and “Fondos Europeos de Desarrollo Regional FEDER” Bachground. Microvascular obstruction (MVO) is negatively associated with cardiac structure and worse prognosis after ST-segment elevation myocardial infarction (STEMI). Epithelial cell adhesion molecule (EpCAM), involved in endothelium adhesion, is an understudied area in the MVO setting. Purpose. We aimed to evaluate whether EpCAM is associated with the appearance of cardiac magnetic resonance (CMR)-derived MVO and long-term systolic function in reperfused STEMI. Methods. We prospectively included 106 patients with a first STEMI treated with primary percutaneous coronary intervention, quantifying serum levels of EpCAM 24 hours post-reperfusion. All patients underwent CMR imaging 1 week and 6 months post-STEMI. The independent correlation of EpCAM with MVO, systolic volume indices, and left ventricular ejection fraction (LVEF) was evaluated. Results. The mean age of the sample was 59 ± 13 years and 76% were male. Patients were dichotomized according to EpCAM median (4.48 pg/mL). At 1-week CMR, lower EpCAM was related to extensive MVO (p-value = 0.02) and greater infarct size (p-value = 0.02). At presentation, only EpCAM values were significantly associated with the presence of MVO in univariate (Odds Ratio [95% confidence interval] (OR [95% CI]): 0.58 [0.38-0.88], p-value = 0.01) and multivariate logistic regression models (OR [95% CI]: 0.54 [0.34-0.85], p-value = 0.007). Although MVO tends to resolve at chronic phases, decreased EpCAM was associated with worse systolic function: depressed LVEF (p-value = 0.009) and higher left ventricular end-systolic volume (p-value = 0.04). Conclusions. EpCAM is associated with occurrence of CMR-derived MVO at acute phases and long-term adverse ventricular remodeling post-STEMI. Future studies are needed to confirm EpCAM as biomarker, and eventually biotarget in STEMI pathophysiology.


2018 ◽  
Vol 20 (8) ◽  
pp. 906-915 ◽  
Author(s):  
Benjamin Marty ◽  
Raymond Gilles ◽  
Marcel Toussaint ◽  
Anthony Béhin ◽  
Tanya Stojkovic ◽  
...  

Abstract Aims Becker muscular dystrophy (BMD) is a genetic neuromuscular disease characterized by an alteration of the dystrophin protein. Myocardial involvement is frequent, eventually progressing to a dilated cardiomyopathy, and represents the most common cause of death for this pathology. We performed a comprehensive evaluation of myocardial functional and structural alterations encountered in a large cohort of BMD patients using quantitative cardiac magnetic resonance (CMR) imaging. Methods and results Eighty-eight BMD patients and 26 age-matched volunteers underwent standard cine and tag imaging to assess myocardial function and dyssynchrony, while native T1, T2, and extracellular volume fraction (ECV) were measured for tissue characterization. The left ventricular ejection fraction (LV-EF) was significantly reduced in 26% of the BMD patients. Patients exhibited higher dyssynchrony index than controls (6.94 ± 3.17 vs. 5.09 ± 1.25, P = 0.005). Diastolic dyssynchrony also exists in patients where systolic function was normal. BMD subjects, compared with controls, had significantly higher native T1, T2, and ECV (1183 ± 60 ms vs. 1164 ± 22 ms, 47.5 ± 4.5 ms vs. 45.6 ± 3.4 ms, 0.282 ± 0.050 vs. 0.231 ± 0.027, respectively, P < 0.05). Native T1, T2, and ECV correlated with LV-EF (R = −0.79, −0.70, and −0.71, respectively, P < 0.001) and N-terminal-pro brain natriuretic peptide (R = 0.51, 0.58, and 0.44, respectively, P < 0.001). Conclusion Quantitative CMR represents a powerful tool to evaluate structural and functional impairments in the myocardium of BMD subjects. Native T1, T2, and ECV provided quantitative biomarkers related to inflammation and fibrosis, and could stratify disease severity.


EP Europace ◽  
2020 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
B Jauregui ◽  
D Soto-Iglesias ◽  
G Zucchelli ◽  
C Teres ◽  
A Ordonez ◽  
...  

Abstract Background  Cardiac magnetic resonance (CMR) is capable of accurately identifying arrhythmogenic substrate (AS), leading to longer arrhythmia-free survival when used to guide ventricular tachycardia (VT) substrate ablation procedures. However, the use of CMR may be limited in certain centers or patient subsets.  Purpose  To evaluate the performance of multidetector cardiac computed tomography (MDCT) imaging in identifying heterogeneous tissue channels (HTCs) detected by CMR in ischemic patients undergoing VT substrate ablation. Methods  Thirty ischemic patients undergoing both CMR and MDCT before VT substrate ablation were included. Using a dedicated post-processing software, two blinded operators, assigned either to CMR or MDCT analysis, characterized the presence of CMR- and CT-channels, respectively. CMR-channels were classified as endocardial (layers &lt;50%), epicardial (layers ≥50%) or transmural. CMR- vs. CT-channel concordance was considered when the orientation was the same and they were located in the same AHA segment. Results  Mean age was 69 ± 10 years; 90% were male. Mean left ventricular ejection fraction (LVEF) was 35 ± 10%. All patients had CMR-channels (n = 76), whereas only 26/30 (86.7%) had CT-channels (n = 91). Global sensitivity (Se) and positive predictive values (PPV) for detecting CMR-channels were 61.8% and 51.6%, respectively. MDCT performance improved in patients with epicardial CMR-channels (Se 80.5%), and transmural scars (Se 72.2%). In 4/11 (36%) patients with subendocardial MI, MDCT was unable to identify the AS. Conclusion  MDCT fails to detect the presence of AS in 36% of patients with subendocardial MI and shows a modest sensitivity identifying the presence of HTCs, although its performance improves in patients with transmural scar. Abstract Figure. Multimodality imaging AS detection


Sign in / Sign up

Export Citation Format

Share Document