scholarly journals EpCAM and microvascular obstruction in patients with STEMI: a cardiac magnetic resonance study

2021 ◽  
Vol 22 (Supplement_2) ◽  
Author(s):  
C Rios-Navarro ◽  
J Gavara ◽  
J Nunez ◽  
C Bonanad Lozano ◽  
E Revuelta-Lopez ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – EU funding. Main funding source(s): This study was funded by “Instituto de Salud Carlos III” and “Fondos Europeos de Desarrollo Regional FEDER” Bachground. Microvascular obstruction (MVO) is negatively associated with cardiac structure and worse prognosis after ST-segment elevation myocardial infarction (STEMI). Epithelial cell adhesion molecule (EpCAM), involved in endothelium adhesion, is an understudied area in the MVO setting. Purpose. We aimed to evaluate whether EpCAM is associated with the appearance of cardiac magnetic resonance (CMR)-derived MVO and long-term systolic function in reperfused STEMI. Methods. We prospectively included 106 patients with a first STEMI treated with primary percutaneous coronary intervention, quantifying serum levels of EpCAM 24 hours post-reperfusion. All patients underwent CMR imaging 1 week and 6 months post-STEMI. The independent correlation of EpCAM with MVO, systolic volume indices, and left ventricular ejection fraction (LVEF) was evaluated. Results. The mean age of the sample was 59 ± 13 years and 76% were male. Patients were dichotomized according to EpCAM median (4.48 pg/mL). At 1-week CMR, lower EpCAM was related to extensive MVO (p-value = 0.02) and greater infarct size (p-value = 0.02). At presentation, only EpCAM values were significantly associated with the presence of MVO in univariate (Odds Ratio [95% confidence interval] (OR [95% CI]): 0.58 [0.38-0.88], p-value = 0.01) and multivariate logistic regression models (OR [95% CI]: 0.54 [0.34-0.85], p-value = 0.007). Although MVO tends to resolve at chronic phases, decreased EpCAM was associated with worse systolic function: depressed LVEF (p-value = 0.009) and higher left ventricular end-systolic volume (p-value = 0.04). Conclusions. EpCAM is associated with occurrence of CMR-derived MVO at acute phases and long-term adverse ventricular remodeling post-STEMI. Future studies are needed to confirm EpCAM as biomarker, and eventually biotarget in STEMI pathophysiology.

2021 ◽  
Vol 48 (4) ◽  
Author(s):  
Amol S. Pednekar ◽  
Benjamin Y.C. Cheong ◽  
Raja Muthupillai

Cardiac magnetic resonance enables comprehensive cardiac evaluation; however, intense time and labor requirements for data acquisition and processing have discouraged many clinicians from using it. We have developed an alternative image-processing algorithm that requires minimal user interaction: an ultrafast algorithm that computes left ventricular ejection fraction (LVEF) by using temporal intensity variation in cine balanced steady-state free precession (bSSFP) short-axis images, with or without contrast medium. We evaluated the algorithm's performance against an expert observer's analysis for segmenting the LV cavity in 65 study participants (LVEF range, 12%–70%). In 12 instances, contrast medium was administered before cine imaging. Bland-Altman analysis revealed quantitative effects of LV basal, midcavity, and apical morphologic variation on the algorithm's accuracy. Total computation time for the LV stack was <2.5 seconds. The algorithm accurately delineated endocardial boundaries in 1,132 of 1,216 slices (93%). When contours in the extreme basal and apical slices were not adequate, they were replaced with manually drawn contours. The Bland-Altman mean differences were <1.2 mL (0.8%) for end-diastolic volume, <5 mL (6%) for end-systolic volume, and <3% for LVEF. Standard deviation of the difference was ≤4.1% of LV volume for all sections except the midcavity in end-systole (8.3% of end-systolic volume). We conclude that temporal intensity variation–based ultrafast LVEF computation is clinically accurate across a range of LV shapes and wall motions and is suitable for postcontrast cine SSFP imaging. Our algorithm enables real-time processing of cine bSSFP images on a commercial scanner console within 3 seconds in an unobtrusive automated process.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
V Marcos Garces ◽  
J Gonzalez ◽  
J Gavara ◽  
C Rios-Navarro ◽  
C Bonanad ◽  
...  

Abstract Introduction Cardiac magnetic resonance (CMR) has emerged as the most potent non-invasive imaging technique for risk stratification after ST-segment elevation myocardial infarction (STEMI) but an indiscriminate use in all patients is unfeasible. Echocardiography (Echo) has been universally used for prognostication in this scenario. We hypothesized that left ventricular ejection fraction (LVEF) by Echo can represent the gatekeeper for selecting those patients who benefit most from CMR for prognostic purposes. Methods Data were obtained from a large prospective registry of reperfused STEMI patients (n=516) in whom Echo (2D and Doppler variables) and CMR (cine images, microvascular obstruction and infarct size) were simultaneously recorded at pre-discharge (7±2 days). Major adverse cardiac events (MACE) were defined as a combined clinical end-point: death or re-admission for acute heart failure (whichever occurred first). Patients were categorized in reduced LVEF (r-LVEF, <40%), mid-range LVEF (mr-LVEF, 40–49%) and preserved LVEF (p-LVEF, ≥50%). Hierarchical multivariate Cox regression analyses including first clinical+Echo variables and then CMR variables where carried out. C-statistics, “net reclassification” (NRI) and “integrated discrimination” (IDI) indexes were obtained. Results During a mean and median follow-up of 4 years, 86 first MACE (17%) were registered (39 deaths and 47 re-admissions for acute heart failure). In the whole study group (n=516), the independent predictors of MACE were time to revascularization (min), GRACE score, CMR-LVEF (%) and CMR-microvascular obstruction (% of LV mass); C-statistic 0.82 (p<0.001). The MACE rate in patients with r-LVEF, mr-LVEF and p-LVEF was 47%, 23% and 11% by Echo-LVEF and 45%, 17% and 8% by CMR-LVEF. LVEF was lower by CMR than by Echo (51±13 vs. 54±10, p<0.001) and r-LVEF was more frequently detected by CMR (n=94, 18%) than by Echo (n=48, 9%), p<0.001. CMR significantly improved clinical+Echo stratification in those 112 patients (22%) with mr-Echo-LVEF (C-statistitics 0.74 vs 0.82; NRI and IDI: p<0.05) but it did not in those 355 patients (69%) with p-Echo-LVEF (C-statistitics 0.75 vs 0.76; NRI and IDI: non-significant) and in those 49 patients (9%) with r-Echo-LVEF (C-statistitics 0.77 vs 0.77; NRI and IDI: non-significant). Figure 1. Risk stratification after STEMI Conclusions Applied in an individualized manner, Echo-LVEF appears as a useful gatekeeper for a selective use of CMR soon after STEMI for prognostic purposes. The event rate is high in patients with reduced Echo-LVEF and low in those with preserved Echo-LVEF; CMR does not seem to significantly improve risk stratification in these scenarios. Nevertheless, the occurrence of mid-range Echo-LVEF permits discriminating the specific subset of STEMI patients (less than a quarter) who really benefit from pre-discharge CMR in terms of risk assessment. Acknowledgement/Funding Funded by “Instituto de Salud Carlos III”/FEDER (PIE15/00013, PI17/01836, and CIBERCV16/11/00486 grants) and Generalitat Valenciana (GV/2018/116).


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 178 ◽  
Author(s):  
Chrysovalantou Nikolaidou ◽  
Konstantinos Kouskouras ◽  
Nikolaos Fragakis ◽  
Vassilios P. Vassilikos ◽  
Haralambos Karvounis ◽  
...  

Acquiring high-quality cardiac magnetic resonance (CMR) images in patients with frequent ventricular arrhythmias remains a challenge. We examined the safety and efficacy of procainamide when administered on the scanner table prior to CMR scanning to suppress ventricular ectopy and acquire high-quality images. Fifty consecutive patients (age 53.0 [42.0–58.0]; 52% female, left ventricular ejection fraction 55 ± 9%) were scanned in a 1.5 T scanner using a standard cardiac protocol. Procainamide was administered at intermittent intravenous bolus doses of 50 mg every minute until suppression of the ectopics or a maximum dose of 10 mg/kg. The average dose of procainamide was 567 ± 197 mg. Procainamide successfully suppressed premature ventricular contractions (PVCs) in 82% of patients, resulting in high-quality images. The baseline blood pressure (BP) was mildly reduced (mean change systolic BP −12 ± 9 mmHg; diastolic BP −4 ± 9 mmHg), while the baseline heart rate (HR) remained relatively unchanged (mean HR change −1 ± 6 bpm). None of the patients developed proarrhythmic changes. Bolus intravenous administration of procainamide prior to CMR scanning is a safe and effective alternative approach for suppressing PVCs and acquiring high-quality images in patients with frequent PVCs and normal or only mildly reduced systolic function.


2020 ◽  
Vol 9 (6) ◽  
pp. 1957
Author(s):  
Victor Marcos-Garces ◽  
Jose Gavara ◽  
Jose V Monmeneu ◽  
Maria P Lopez-Lereu ◽  
Nerea Perez ◽  
...  

Vasodilator stress cardiac magnetic resonance (stressCMR) has shown robust diagnostic and prognostic value in patients with known or suspected chronic coronary syndrome (CCS). However, it is unknown whether integration of stressCMR with clinical variables in a simple clinical-imaging score can straightforwardly predict all-cause mortality in this population. We included 6187 patients in a large registry that underwent stressCMR for known or suspected CCS. Several clinical and stressCMR variables were collected, such as left ventricular ejection fraction (LVEF) and ischemic burden (number of segments with stress-induced perfusion defects (PD)). During a median follow-up of 5.56 years, we registered 682 (11%) all-cause deaths. The only independent predictors of all-cause mortality in multivariable analysis were age, male sex, diabetes mellitus (DM), LVEF and ischemic burden. Based on the weight of the chi-square increase at each step of the multivariable analysis, we created a simple clinical-stressCMR (C-CMR-10) score that included these variables (age ≥ 65 years = 3 points, LVEF ≤ 50% = 3 points, DM = 2 points, male sex = 1 point, and ischemic burden > 5 segments = 1 point). This 0 to 10 points C-CMR-10 score showed good performance to predict all-cause annualized mortality rate ranging from 0.29%/year (score = 0) to >4.6%/year (score ≥ 7). The goodness of the model and of the C-CMR-10 score was separately confirmed in 2 internal cohorts (n > 3000 each). We conclude that a novel and simple clinical-stressCMR score, which includes clinical and stressCMR variables, can provide robust prediction of the risk of long-term all-cause mortality in a population of patients with known or suspected CCS.


2018 ◽  
Vol 20 (8) ◽  
pp. 906-915 ◽  
Author(s):  
Benjamin Marty ◽  
Raymond Gilles ◽  
Marcel Toussaint ◽  
Anthony Béhin ◽  
Tanya Stojkovic ◽  
...  

Abstract Aims Becker muscular dystrophy (BMD) is a genetic neuromuscular disease characterized by an alteration of the dystrophin protein. Myocardial involvement is frequent, eventually progressing to a dilated cardiomyopathy, and represents the most common cause of death for this pathology. We performed a comprehensive evaluation of myocardial functional and structural alterations encountered in a large cohort of BMD patients using quantitative cardiac magnetic resonance (CMR) imaging. Methods and results Eighty-eight BMD patients and 26 age-matched volunteers underwent standard cine and tag imaging to assess myocardial function and dyssynchrony, while native T1, T2, and extracellular volume fraction (ECV) were measured for tissue characterization. The left ventricular ejection fraction (LV-EF) was significantly reduced in 26% of the BMD patients. Patients exhibited higher dyssynchrony index than controls (6.94 ± 3.17 vs. 5.09 ± 1.25, P = 0.005). Diastolic dyssynchrony also exists in patients where systolic function was normal. BMD subjects, compared with controls, had significantly higher native T1, T2, and ECV (1183 ± 60 ms vs. 1164 ± 22 ms, 47.5 ± 4.5 ms vs. 45.6 ± 3.4 ms, 0.282 ± 0.050 vs. 0.231 ± 0.027, respectively, P < 0.05). Native T1, T2, and ECV correlated with LV-EF (R = −0.79, −0.70, and −0.71, respectively, P < 0.001) and N-terminal-pro brain natriuretic peptide (R = 0.51, 0.58, and 0.44, respectively, P < 0.001). Conclusion Quantitative CMR represents a powerful tool to evaluate structural and functional impairments in the myocardium of BMD subjects. Native T1, T2, and ECV provided quantitative biomarkers related to inflammation and fibrosis, and could stratify disease severity.


EP Europace ◽  
2020 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
B Jauregui ◽  
D Soto-Iglesias ◽  
G Zucchelli ◽  
C Teres ◽  
A Ordonez ◽  
...  

Abstract Background  Cardiac magnetic resonance (CMR) is capable of accurately identifying arrhythmogenic substrate (AS), leading to longer arrhythmia-free survival when used to guide ventricular tachycardia (VT) substrate ablation procedures. However, the use of CMR may be limited in certain centers or patient subsets.  Purpose  To evaluate the performance of multidetector cardiac computed tomography (MDCT) imaging in identifying heterogeneous tissue channels (HTCs) detected by CMR in ischemic patients undergoing VT substrate ablation. Methods  Thirty ischemic patients undergoing both CMR and MDCT before VT substrate ablation were included. Using a dedicated post-processing software, two blinded operators, assigned either to CMR or MDCT analysis, characterized the presence of CMR- and CT-channels, respectively. CMR-channels were classified as endocardial (layers &lt;50%), epicardial (layers ≥50%) or transmural. CMR- vs. CT-channel concordance was considered when the orientation was the same and they were located in the same AHA segment. Results  Mean age was 69 ± 10 years; 90% were male. Mean left ventricular ejection fraction (LVEF) was 35 ± 10%. All patients had CMR-channels (n = 76), whereas only 26/30 (86.7%) had CT-channels (n = 91). Global sensitivity (Se) and positive predictive values (PPV) for detecting CMR-channels were 61.8% and 51.6%, respectively. MDCT performance improved in patients with epicardial CMR-channels (Se 80.5%), and transmural scars (Se 72.2%). In 4/11 (36%) patients with subendocardial MI, MDCT was unable to identify the AS. Conclusion  MDCT fails to detect the presence of AS in 36% of patients with subendocardial MI and shows a modest sensitivity identifying the presence of HTCs, although its performance improves in patients with transmural scar. Abstract Figure. Multimodality imaging AS detection


Sign in / Sign up

Export Citation Format

Share Document