Stress–strain behaviour of poly(ethylene terephthalate) (PET) during large plastic deformation by plane strain compression: the relation between stress–strain curve and thermal history, temperature and strain rate

2005 ◽  
Vol 45 (2) ◽  
pp. 142-150 ◽  
Author(s):  
Elton L. G. Denardin ◽  
Shinichi Tokumoto ◽  
Dimitrios Samios
1948 ◽  
Vol 15 (3) ◽  
pp. 222-225
Author(s):  
H. F. Bohnenblust ◽  
Pol Duwez

Abstract Various mechanical models explaining the plastic deformation of metals have been proposed. One of the present authors has shown that in some cases an analytical expression for the stress-strain curve and the hysteresis curve of a metal in the plastic range can be deduced from such a model. The present investigation is a further analysis of the model leading to the computation of the change in potential energy of the metal due to work-hardening.


1997 ◽  
Vol 119 (2) ◽  
pp. 81-84 ◽  
Author(s):  
A. Gilat ◽  
K. Krishna

A new configuration for testing thin layers of solder is introduced and employed to study the effects of strain rate and thickness on the mechanical response of eutectic Sn-Pb solder. The solder in the test is loaded under a well defined state of pure shear stress. The stress and deformation in the solder are measured very accurately to produce a reliable stress-strain curve. The results show that both the stress needed for plastic deformation and ductility increase with increasing strain rate.


2018 ◽  
Vol 7 (3.9) ◽  
pp. 18
Author(s):  
Chee Loong Chin ◽  
Chau Khun Ma ◽  
Jia Yang Tan ◽  
Abdullah Zawawi Awang ◽  
Wahid Omar

External passive confinement has been used as strengthening scheme to rehabilitate existing reinforced concrete buildings. Passive confinement requires a certain lateral dilation of concrete prior to the activation of the confining effect. Applying pre-tensioned force to the confining material can eliminate the needs of such lateral dilation. This paper presents a review on previous studies conducted about pre-tensioned level in confined concrete. A short discussion is done based on the effect of pre-tensioned level to the three regions of stress-strain curve. It was found that pre-tensioned level affects the stress-strain behaviour of confined concrete. Pre-tensioned level that is too high decreases the strain capacity of the confined concrete. This review suggests that there exists an optimum pre-tensioned level for each confining material.  


Sign in / Sign up

Export Citation Format

Share Document