Newtonian, power law, and infinite shear flow characteristics of concentrated slurries using percolation theory concepts

2018 ◽  
Vol 57 (3) ◽  
pp. 197-216 ◽  
Author(s):  
Gregory A. Campbell ◽  
Michael E. Zak ◽  
Mark D. Wetzel
2018 ◽  
Vol 27 (4) ◽  
pp. 474-488 ◽  
Author(s):  
A. A. Gavrilov ◽  
K. A. Finnikov ◽  
Ya. S. Ignatenko ◽  
O. B. Bocharov ◽  
R. May

2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983358
Author(s):  
Hongyan Chu ◽  
Xuecong Lin ◽  
Ligang Cai

In the offset press, ink flows in the microchannel made of two rotating rollers that are in the state of squeezing and contacting. The ink flow characteristics are not only influenced by the viscous dissipation effect, but also change with the heat transfer. First, by summarizing the common viscosity–shear rate models of non-Newtonian fluid, the power law model was chosen for describing offset ink through rheometer measuring. Combined with the experimental data, the viscosity–temperature relationship of the offset ink was described by the Arrhenius’s law. Then, the temperature characteristics of the offset ink fluid in the microchannel were studied using the fluid simulation software FLUENT. The ink fluid temperature field model considering viscous dissipation and heat transfer was established, and the temperature distributions of the ink fluid inside the microchannel and at the exit and entrance were obtained. The influence of the feature size on the ink temperature was also researched. Finally, the ink temperature and flow characteristics were compared with that under the condition without heat transfer. We got the influence of feature size and heat transfer on the ink temperature characteristics. As the feature size is smaller, the ink temperature increase from the microchannel entrance to the exit, increases first and then decreases, and keeps invariant at last. The heat transfer makes the viscous dissipation weaken relatively and then the ink temperature decreases. In a word, the heat transfer enhances as the feature size decreases. The results provide reference for improving the printing quality of offset press.


2019 ◽  
Vol 880 ◽  
pp. 209-238 ◽  
Author(s):  
Xiangming Yu ◽  
Kelli Hendrickson ◽  
Bryce K. Campbell ◽  
Dick K. P. Yue

We investigate two-phase free-surface turbulence (FST) associated with an underlying shear flow under the condition of strong turbulence (SFST) characterized by large Froude ($Fr$) and Weber ($We$) numbers. We perform direct numerical simulations of three-dimensional viscous flows with air and water phases. In contrast to weak FST (WFST) with small free-surface distortions and anisotropic underlying turbulence with distinct inner/outer surface layers, we find SFST to be characterized by large surface deformation and breaking accompanied by substantial air entrainment. The interface inner/outer surface layers disappear under SFST, resulting in nearly isotropic turbulence with ${\sim}k^{-5/3}$ scaling of turbulence kinetic energy near the interface (where $k$ is wavenumber). The SFST air entrainment is observed to occur over a range of scales following a power law of slope $-10/3$. We derive this using a simple energy argument. The bubble size spectrum in the volume follows this power law (and slope) initially, but deviates from this in time due to a combination of ongoing broad-scale entrainment and bubble fragmentation by turbulence. For varying $Fr$ and $We$, we find that air entrainment is suppressed below critical values $Fr_{cr}$ and $We_{cr}$. When $Fr^{2}>Fr_{cr}^{2}$ and $We>We_{cr}$, the entrainment rate scales as $Fr^{2}$ when gravity dominates surface tension in the bubble formation process, while the entrainment rate scales linearly with $We$ when surface tension dominates.


2008 ◽  
Author(s):  
Masamichi J. Miyama ◽  
Shin-ichi Sasa ◽  
Michio Tokuyama ◽  
Irwin Oppenheim ◽  
Hideya Nishiyama

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ying Xu ◽  
Yuebin Wu ◽  
Qiang Sun

The flow characteristics of raw sewage directly affect the technical and economic performance of sewage-source heat pump systems. The purpose of this research is to characterize the flow characteristics of sewage by experimental means. A sophisticated and flexible experimental apparatus was designed and constructed. Then the flow characteristics of the raw sewage were studied through laboratorial testing and theoretical analyses. Results indicated that raw sewage could be characterized as a power-law fluid with the rheological exponentnbeing 0.891 and the rheological coefficientkbeing 0.00175. In addition, the frictional loss factor formula in laminar flow for raw sewage was deduced by theoretical analysis of the power-law fluid. Furthermore, an explicit empirical formula for the frictional loss factor in turbulent flow was obtained through curve fitting of the experimental data. Finally, the equivalent viscosity of the raw sewage is defined in order to calculate the Reynolds number in turbulent flow regions; it was found that sewage had two to three times the viscosity of water at the same temperature. These results contributed to appropriate parameters of fluid properties when designing and operating sewage-source heat pump systems.


1967 ◽  
Vol 89 (3) ◽  
pp. 633-640 ◽  
Author(s):  
J. P. Lamb

The development of a two-dimensional, free turbulent shear layer from an arbitrary initial velocity profile is analyzed theoretically. Included in the analysis are effects of both compressibility and heat transfer with unit turbulent Prandtl number. The mean flow is described by approximate velocity profiles containing an unknown position parameter which is dependent upon the development distance. Integral forms of the continuity and momentum equations are utilized to specify the flow characteristics along the streamline which separates the primary and secondary flow regions. By integrating a simplified form of the transverse motion equation for this dividing streamline, one is able to calculate the position parameter and thus complete the description of the developing flow field. For initial profiles of a power law type, the theory shows that the development distance required for any flow field variable to achieve a specified percentage of its asymptotic value is proportional to the free-stream Crocco number, to the power law exponent, and to the ratio of the ambient to jet stagnation temperatures. The theory is also utilized to estimate the effects of heat transfer and compressibility on the variation of growth rates for fully developed mixing zones.


2020 ◽  
Vol 59 (8) ◽  
pp. 583-599
Author(s):  
Gregory A. Campbell ◽  
Jayaprakash S. Radhakrishnan ◽  
Mark D Wetzel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document