scholarly journals Towards a universal shear correction factor in filament stretching rheometry

2021 ◽  
Author(s):  
F. P. A. van Berlo ◽  
R. Cardinaels ◽  
G. W. M. Peters ◽  
P. D. Anderson

AbstractFilament stretching rheometry is a prominent experimental method to determine rheological properties in extensional flow whereby the separating plates determine the extension rate. In literature, several correction factors that can compensate for the errors introduced by the shear contribution near the plates have been introduced and validated in the linear viscoelastic regime. In this work, a systematic analysis is conducted to determine if a material-independent correction factor can be found for non-linear viscoelastic polymers. To this end, a finite element model is presented to describe the flow and resulting stresses in the filament stretching rheometer. The model incorporates non-linear viscoelasticity and a radius-based controller for the plate speed is added to mimic the typical extensional flow in filament stretching rheometry. The model is validated by comparing force simulations with analytical solutions. The effects of the end-plates on the extensional flow and resulting force measurements are investigated, and a modification of the shear correction factor is proposed for the non-linear viscoelastic flow regime. This shows good agreement with simulations performed at multiple initial aspect ratios and strain rates and is shown to be valid for a range of polymers with non-linear rheological behaviour.

2006 ◽  
Vol 16 (5) ◽  
pp. 265-274 ◽  
Author(s):  
Trevor S.K. Ng ◽  
Gareth H. McKinley ◽  
Mahesh Padmanabhan

Abstract We provide an overview of transient extensional rheometry techniques for wheat flour doughs in which the deformation and material response is well defined. The behavior of a range of model doughs was explored with a Filament Stretching Extensional Rheometer (FISER). The measurements were also compared to data obtained with a new wind- up extensional rheometer; the SER universal testing platform. A simple empirical constitutive equation, which allows characterization of the experimental results with a small number of parameters, is presented to describe the resulting measurements. To characterize the relaxation modulus of the doughs, small amplitude shear tests were performed on samples that have been shear-mixed in a mixograph for varying lengths of time. The linear viscoelastic properties were found to exhibit a broad power-law dependence on the imposed oscillatory frequency that is very reminiscent of that exhibited by a critical gel. The critical gel model of Winter and Chambon [1, 2] was used as the basis for constructing a non-linear constitutive equation for the material stress by combining the relaxation modulus for the critical gel with a Lodge rubber-like liquid form for the kinematics. Transient uniaxial extensional data recorded from the FISER and SER instruments were then compared to the predictions of the constitutive equation. The model captures the initial power- law response and subsequent strain-hardening; however additional physics is required to describe the rheological phenomena at very large Hencky strains, including finite extensibility effects and filament rupture in extensional flows.


2020 ◽  
Vol 7 (1) ◽  
pp. 80-100
Author(s):  
Rahul Kumar ◽  
Achchhe Lal ◽  
B. M. Sutaria

AbstractIn this paper, non-linear transverse deflection, stress and stress concentration factors (SCF) of isotropic and laminated composite sandwich plate (LCSP) with and without elliptical cutouts subjected to various trans-verse loadings in hygrothermal environment are studied. The basic formulation is based on secant function-based shear deformation theory (SFSDT) with von-Karman nonlinearity. The governing equation of non-linear deflection is derived using C0 finite element method (FEM) through minimum potential energy approach. Normalized trans-verse maximum deflections (NTMD) along with stress concentration factor is determined by using Newton’s Raphson method through Gauss point stress extrapolation. Influence of fiber orientations, load parameters, fiber volume fractions, plate span to thickness ratios, aspect ratios, thickness of core and face, position of core, boundary conditions, environmental conditions and types of transverse loading in MATLAB R2015a environment are examined. The numerical results using present solution methodology are verified with the results available in the literatures.


1976 ◽  
Vol 1 (2) ◽  
pp. 147-157 ◽  
Author(s):  
D. Acierno ◽  
F.P. La Mantia ◽  
G. Marrucci ◽  
G. Rizzo ◽  
G. Titomanlio

Author(s):  
Christian Goñi ◽  
Ricardo I. Jeldres ◽  
Pedro G. Toledo ◽  
Anthony D. Stickland ◽  
Peter J. Scales

Sign in / Sign up

Export Citation Format

Share Document