scholarly journals Early presentation of urinary retention in multiple system atrophy: can the disease begin in the sacral spinal cord?

2019 ◽  
Vol 267 (3) ◽  
pp. 659-664 ◽  
Author(s):  
Jalesh N. Panicker ◽  
Sara Simeoni ◽  
Yasuo Miki ◽  
Amit Batla ◽  
Valeria Iodice ◽  
...  

Abstract Lower urinary tract (LUT) dysfunction presents early in multiple system atrophy (MSA), usually initially as urinary urgency, frequency and incontinence, and voiding difficulties/urinary retention becomes apparent over time. We have observed a subset of patients who instead presented initially with urinary retention requiring catheterisation. At presentation, these patients had only subtle neurological signs that would not fulfil the diagnostic criteria of MSA; however, the anal sphincter electromyography (EMG) was abnormal and they reported bowel and sexual dysfunction, suggesting localisation at the level of the sacral spinal cord. They subsequently developed classical neurological signs, meeting the diagnostic criteria for probable MSA. One patient was confirmed to have MSA at autopsy. We postulate that in a subset of patients with MSA, the disease begins in the sacral spinal cord and then spreads to other regions resulting in the classical signs of MSA. The transmissibility of alpha-synuclein has been demonstrated in animal models and the spread of pathology from sacral cord to other regions of the central nervous system is therefore plausible. Patients presenting with urinary retention and mild neurological features would be an ideal group for experimental trials evaluating neuroprotection in MSA

2019 ◽  
Author(s):  
Yinhua Li ◽  
Wei Hou ◽  
Yunge Jia ◽  
Chenxu Rao ◽  
Zichun Wei ◽  
...  

AbstractMegaloneurite of NADPH diaphorase (NADPH-d) positivity is a new kind of aging-related neurodegeneration and also co-localized with vasoactive intestinal peptide (VIP) in the sacral spinal cord of aged dog and monkey. However, no immunocytochemistry of VIP was exclusively tested in the aged dog and no evidence has been reported in the aged human spinal cord. Aged dogs were used to examine the distribution of VIP immunopositivity in the sacral spinal cord. Immunocytochemistry of VIP and alpha-synuclein were also examined in the aged human spinal cord. The VIP immunopositivity in aged dog was reconfirmed our previous finding illustrated by immunofluorescent study. Megalogneurite was also identified by nitric oxide synthase (NOS) immunoreaction in aged dog. The VIP positive megaloneurites both in age dog and human were detected in dorsal root entry zoon, Lissauer’s tract, dorsal commissural nucleus and anterior commissural gray as well as in the lateral funiculus of the sacral spinal cord exclusive of other segments of spinal cord. Alpha-synuclein positivity was present mini-aggregation and Lewy body in the sacral spinal cord of aged human, that also occurred in the lumber, thoracic and cervical spinal cord. It was firstly tested that VIP megaloneurites occurred in the aged human sacral spinal cord, especially in the white matter. Megaloneurites identified by NADPH-d-VIP-NOS immunoreaction could implicate for the dysfunction of pelvic organs in the aged human being.


2005 ◽  
Vol 32 (06) ◽  
Author(s):  
G Fillon ◽  
M Neumann ◽  
R Zufferey ◽  
P Aebischer ◽  
HA Kretzschmar ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert F. Hoey ◽  
Daniel Medina-Aguiñaga ◽  
Fahmi Khalifa ◽  
Beatrice Ugiliweneza ◽  
Sharon Zdunowski ◽  
...  

AbstractSpinal cord epidural stimulation (scES) mapping at L5-S1 was performed to identify parameters for bladder and bowel inhibition and/or contraction. Using spinally intact and chronic transected rats of both sexes in acute urethane-anesthetized terminal preparations, scES was systematically applied using a modified Specify 5–6–5 (Medtronic) electrode during bladder filling/emptying cycles while recording bladder and colorectal pressures and external urethral and anal sphincter electromyography activity. The results indicate frequency-dependent effects on void volume, micturition, bowel peristalsis, and sphincter activity just above visualized movement threshold intensities that differed depending upon neurological intactness, with some sex-dependent differences. Thereafter, a custom-designed miniature 15-electrode array designed for greater selectivity was tested and exhibited the same frequency-dependent urinary effects over a much smaller surface area without any concurrent movements. Thus, select activation of autonomic nervous system circuitries with scES is a promising neuromodulation approach for expedient translation to individuals with SCI and potentially other neurologic disorders.


Author(s):  
Nelson Ferreira ◽  
Hjalte Gram ◽  
Zachary A. Sorrentino ◽  
Emil Gregersen ◽  
Sissel Ida Schmidt ◽  
...  

AbstractPathology consisting of intracellular aggregates of alpha-Synuclein (α-Syn) spread through the nervous system in a variety of neurodegenerative disorders including Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. The discovery of structurally distinct α-Syn polymorphs, so-called strains, supports a hypothesis where strain-specific structures are templated into aggregates formed by native α-Syn. These distinct strains are hypothesised to dictate the spreading of pathology in the tissue and the cellular impact of the aggregates, thereby contributing to the variety of clinical phenotypes. Here, we present evidence of a novel α-Syn strain induced by the multiple system atrophy-associated oligodendroglial protein p25α. Using an array of biophysical, biochemical, cellular, and in vivo analyses, we demonstrate that compared to α-Syn alone, a substoichiometric concentration of p25α redirects α-Syn aggregation into a unique α-Syn/p25α strain with a different structure and enhanced in vivo prodegenerative properties. The α-Syn/p25α strain induced larger inclusions in human dopaminergic neurons. In vivo, intramuscular injection of preformed fibrils (PFF) of the α-Syn/p25α strain compared to α-Syn PFF resulted in a shortened life span and a distinct anatomical distribution of inclusion pathology in the brain of a human A53T transgenic (line M83) mouse. Investigation of α-Syn aggregates in brain stem extracts of end-stage mice demonstrated that the more aggressive phenotype of the α-Syn/p25α strain was associated with an increased load of α-Syn aggregates based on a Förster resonance energy transfer immunoassay and a reduced α-Syn aggregate seeding activity based on a protein misfolding cyclic amplification assay. When injected unilaterally into the striata of wild-type mice, the α-Syn/p25α strain resulted in a more-pronounced motoric phenotype than α-Syn PFF and exhibited a “tropism” for nigro-striatal neurons compared to α-Syn PFF. Overall, our data support a hypothesis whereby oligodendroglial p25α is responsible for generating a highly prodegenerative α-Syn strain in multiple system atrophy.


2021 ◽  
pp. 1-11
Author(s):  
David I. Finkelstein ◽  
Jay J. Shukla ◽  
Robert A. Cherny ◽  
Jessica L. Billings ◽  
Eiman Saleh ◽  
...  

Background: An elevation in iron levels, together with an accumulation of α-synuclein within the oligodendrocytes, are features of the rare atypical parkinsonian disorder, Multiple System Atrophy (MSA). We have previously tested the novel compound ATH434 (formally called PBT434) in preclinical models of Parkinson’s disease and shown that it is brain-penetrant, reduces iron accumulation and iron mediated redox activity, provides neuroprotection, inhibits alpha synuclein aggregation and lowers the tissue levels of alpha synuclein. The compound was also well-tolerated in a first-in-human oral dosing study in healthy and older volunteers with a favorable, dose-dependent pharmacokinetic profile. Objective: To evaluate the efficacy of ATH434 in a mouse MSA model. Methods: The PLP-α-syn transgenic mouse overexpresses α-synuclein, demonstrates oligodendroglial pathology, and manifests motor and non-motor aspects of MSA. Animals were provided ATH434 (3, 10, or 30 mg/kg/day spiked into their food) or control food for 4 months starting at 12 months of age and were culled at 16 months. Western blot was used to assess oligomeric and urea soluble α-synuclein levels in brain homogenates, whilst stereology was used to quantitate the number of nigral neurons and glial cell inclusions (GCIs) present in the substantia nigra pars compacta. Results: ATH434 reduced oligomeric and urea soluble α-synuclein aggregation, reduced the number of GCIs, and preserved SNpc neurons. In vitro experiments suggest that ATH434 prevents the formation of toxic oligomeric species of synuclein. Conclusion: ATH434 is a promising small molecule drug candidate that has potential to move forward to trial for treating MSA.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2072 ◽  
Author(s):  
Heather T Whittaker ◽  
Yichen Qui ◽  
Conceição Bettencourt ◽  
Henry Houlden

Multiple system atrophy (MSA) is one of the few neurodegenerative disorders where we have a significant understanding of the clinical and pathological manifestations but where the aetiology remains almost completely unknown. Research to overcome this hurdle is gaining momentum through international research collaboration and a series of genetic and molecular discoveries in the last few years, which have advanced our knowledge of this rare synucleinopathy. In MSA, the discovery of α-synuclein pathology and glial cytoplasmic inclusions remain the most significant findings. Families with certain types of α-synuclein mutations develop diseases that mimic MSA, and the spectrum of clinical and pathological features in these families suggests a spectrum of severity, from late-onset Parkinson’s disease to MSA. Nonetheless, controversies persist, such as the role of common α-synuclein variants in MSA and whether this disorder shares a common mechanism of spreading pathology with other protein misfolding neurodegenerative diseases. Here, we review these issues, specifically focusing on α-synuclein mutations.


Sign in / Sign up

Export Citation Format

Share Document