One Dimensional Moving Heat Source in Hollow FGM Cylinder

Author(s):  
Mohsen Jabbari ◽  
Amir Hossein Mohazzab ◽  
Ali Bahtui

This paper presents the analytical solution of one-dimensional mechanical and thermal stresses for a hollow cylinder made of functionally graded material. The material properties vary continuously across the thickness, according to power functions of radial direction. Temperature distribution is symmetric, and transient. The thermal boundary conditions may include conduction, flux, and convection for inside or outside of hollow cylinder. Thermoelasticity equation is transient, including the moving heat source. The heat conduction and Navier equations are solved analytically, using the generalized Bessel function. A direct method of solution of Navier equation is presented.

2008 ◽  
Vol 131 (2) ◽  
Author(s):  
M. Jabbari ◽  
A. H. Mohazzab ◽  
A. Bahtui

This paper presents the analytical solution of one-dimensional mechanical and thermal stresses for a hollow cylinder made of functionally graded material. The material properties vary continuously across the thickness, according to the power functions of radial direction. Temperature distribution is symmetric and transient. The thermal boundary conditions may include conduction, flux, and convection for inside or outside of a hollow cylinder. The thermoelasticity equation is transient, including the moving heat source. The heat conduction and Navier equations are solved analytically, using the generalized Bessel function. A direct method of solution of Navier equation is presented.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
M. Jabbari ◽  
M. A. Kiani

In this paper, the exact solution of the equation of transient heat conduction in two dimensions for a hollow cylinder made of functionally graded material (FGM) and piezoelectric layers is developed. Temperature distribution, as function of radial and circumferential directions and time, is analytically obtained for different layers, using the method of separation of variables and generalized Bessel function. The FGM properties are assumed to depend on the variable r, and they are expressed as power functions of r.


A hollow cylinder having cylindrical hole at the center has been examined under the temperature variation condition. This composition deals with study of temperature distribution in thin hollow cylinder and corresponding stresses. The author has worked to carry out the transient thermo elastic problem for evaluation of temperature distribution, displacement and thermal stresses of a thin hollow cylinder. The known non homogeneous boundary conditions are applied to obtain the solution of this problem. The integral transform technique yields the solution to the problem. The analysis contains an infinite series. The variation of said parameters observed and analyzed by using necessary graphs


2011 ◽  
Vol 264-265 ◽  
pp. 700-705 ◽  
Author(s):  
Amir Hossein Mohazzab ◽  
Mohsen Jabbari

This work studied the theoretical solution for axisymmetric steady-state mechanical and thermal stresses in hollow functionally graded spheres with respect to heat source. The material properties of the FG sphere change continuously across the thickness direction according to the power functions of radial direction. The steady-state temperature, displacements, and stresses are derived due to the general mechanical and thermal boundary conditions as function of radial and circumferential directions. The temperature and Navier equations are solved analytically, using Taylor and Legendre series. With increasing the power law indices the temperature distribution due to heat source is decreased. Circumferential stress and radial displacement due to heat source are decreased as the power law index increases.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
M. Jabbari ◽  
M. Meshkini ◽  
M. R. Eslami

The general solution of steady-state on one-dimensional Axisymmetric mechanical and thermal stresses for a hollow thick made of cylinder Functionally Graded porous material is developed. Temperature, as functions of the radial direction with general thermal and mechanical boundary-conditions on the inside and outside surfaces. A standard method is used to solve a nonhomogenous system of partial differential Navier equations with nonconstant coefficients, using complex Fourier series, rather power functions method and solve the heat conduction. The material properties, except poisson's ratio, are assumed to depend on the variable , and they are expressed as power functions of .


2003 ◽  
Vol 70 (1) ◽  
pp. 111-118 ◽  
Author(s):  
M. Jabbari ◽  
S. Sohrabpour ◽  
M. R. Eslami

In this paper, the general theoretical analysis of two-dimensional steady-state thermal stresses for a hollow thick cylinder made of functionally graded material is developed. The temperature distribution is assumed to be a function of radial and circumferential directions with general thermal and mechanical boundary conditions on the inside and outside surfaces. The material properties, except Poisson’s ratio, are assumed to depend on the variable r and they are expressed as power functions of r. The separation of variables and complex Fourier series are used to solve the heat conduction and Navier equations.


2012 ◽  
Vol 151 ◽  
pp. 396-400 ◽  
Author(s):  
Zeng Tao Chen ◽  
Hamid Akbarzadeh ◽  
Hossein Babaei

The multi-physics of piezoelectric materials under different environmental conditions has been an active research subject for a few decades. Particularly, the thermoelastic behaviour of smart materials and structures is of great importance to their reliability in different applications. Traditionally, the Fourier heat conduction theory was introduced in dealing with the thermoelastic reactions of smart materials and structures. This may lead to reasonable analyses and useful guidelines in design of smart structures, especially when no severe thermal gradient is involved. However, when a severe thermal gradient is indeed involved in the service environment of a smart structure, the analysing results based on the Fourier heat conduction theory is unrealistic and usually rendered useless. Non-Fourier heat conduction theories have been introduced in the thermoelastic analysis of smart materials and structures in recent years and resulted in reasonable results. In this paper, we review the recent results of a thermopiezoelectric problem of a one-dimensional (1-D), finite length, functionally graded medium excited by a moving heat source using both the Fourier and Non-Fourier heat conduction theories. Numerical examples are displayed to illustrate the effects of non-homogeneity index, length and thermal relaxation time on the results.


Sign in / Sign up

Export Citation Format

Share Document