A 1D elastic plastic damage constitutive law for bone tissue

2009 ◽  
Vol 80 (5) ◽  
pp. 543-555 ◽  
Author(s):  
D. Garcia ◽  
Philippe K. Zysset ◽  
M. Charlebois ◽  
A. Curnier
2008 ◽  
Vol 8 (2) ◽  
pp. 149-165 ◽  
Author(s):  
David Garcia ◽  
Philippe K. Zysset ◽  
Mathieu Charlebois ◽  
Alain Curnier

2011 ◽  
Vol 382 ◽  
pp. 348-351
Author(s):  
Ming Xie ◽  
Shan Suo Zheng

In consideration of stochastik and discreteness of fracture surface, a class of mesoscopic damage mechanics model of concrete based on spring model, are put forward to understand the real damage evolution characteristics of concrete at the level of constitutional law. A kind of spring-slipper model is introduced to reflect the elastic-plastic damage behavior. Uniaxial test was operated, combined with the Computerized Tomography test of concrete, to study the evolution of crack surface from mesoscopic level to macroscopic level. And the rationality of fractal damage constitutive law was verified with their theoretical calculation result and test results. Compared with the existing damage constitutive law and experimental results preliminarily, the feasibility of fractal damage constitutive law is verified.


2020 ◽  
Vol 29 (7) ◽  
pp. 1100-1116
Author(s):  
AS Rahimi ◽  
MR Ayatollahi ◽  
AR Torabi

Elastic–plastic damage of a ductile epoxy resin is investigated for the first time in the configuration of semicircular bend specimen weakened by U-shaped notches under mixed mode I/II loading conditions. U-notched specimens are prepared from the characterized epoxy material with different notch rotation angles and notch tip radii. Load-carrying capacities of the U-notched specimens are experimentally obtained by performing fracture tests under various combinations of mode I and mode II loading. The reformulated Equivalent Material Concept is employed for the polymeric material in conjunction with the maximum tangential stress and mean stress criteria to provide the theoretical predictions without any necessity for elastic–plastic analyses of their damage. Scanning electron microscopy micrographs are also taken from the fracture surfaces and utilized for realizing the micromechanical processes of damage in the tested specimens. A very good consistency is found between the experimental results and the predictions of the combined Equivalent Material Concept-maximum tangential stress criterion, as well as those of the Equivalent Material Concept-mean stress criterion.


2014 ◽  
Vol 1065-1069 ◽  
pp. 2099-2103
Author(s):  
Hu Qi ◽  
Yun Gui Li

The most widely used multi-axial concrete models including elastic-plastic model and elastic plastic damage model are expounded and it is recognized that the elastic plastic damage model is more reasonable to reflect nonlinear characteristic of concrete. The development and application of elastic plastic damage model is comprehensively appraised and a practical elastic plastic damage constitutive model is established. Finally the dynamic trend of constitutive model of concrete development is introduced.


2007 ◽  
Vol 2007.56 (0) ◽  
pp. 103-104
Author(s):  
Kunio HAYAKAWA ◽  
Tamotsu NAKAMURA ◽  
Shigekazu TANAKA

1991 ◽  
Vol 58 (3) ◽  
pp. 617-622 ◽  
Author(s):  
Moriaki Goya ◽  
Koichi Ito

A phenomenological corner theory was proposed for elastic-plastic materials by the authors in the previous paper (Goya and Ito, 1980). The theory was developed by introducing two transition parameters, μ (α) and β (α), which, respectively, denote the normalized magnitude and direction angle of plastic strain increments, and both monotonously vary with the direction angle of stress increments. The purpose of this report is to incorporate the Bauschinger effect into the above theory. This is achieved by the introduction of Ziegler’s kinematic hardening rule. To demonstrate the validity and applicability of a newly developed theory, we analyze the bilinear strain-path problem using the developed equation, in which, after some linear loading, the path is abruptly changed to various directions. In the calculation, specific functions, such as μ (α) = Cos (.5πα/αmax) and β (α) = (αmax- .5π) α/αmax, are chosen for the transition parameters. As has been demonstrated by numerous experimental research on this problem, the results in this report also show a distinctive decrease of the effective stress just after the change of path direction. Discussions are also made on the uniqueness of the inversion of the constitutive equation, and sufficient conditions for such uniqueness are revealed in terms of μ(α), β(α) and some work-hardening coefficients.


Sign in / Sign up

Export Citation Format

Share Document