Observance of Stoneley waves at the Lamb wave dispersion in stratified media

2019 ◽  
Vol 90 (5) ◽  
pp. 957-965 ◽  
Author(s):  
S. V. Kuznetsov
2010 ◽  
Vol 123-125 ◽  
pp. 899-902
Author(s):  
Chao Du ◽  
Qing Qing Ni ◽  
Toshiaki Natsuki

Signals propagate on plate-like structures as ultrasonic guided waves, and analysis of Lamb waves has been widely used for on-line monitoring. In this study, the wave velocities of symmetric and anti-symmetric modes in various directions of propagation were investigated. Since the wave velocities of these two modes are different, it is possible to compute the difference in their arrival times when these waves propagated the distance from the vibration source to sensor. This paper presents an evaluation formulation of wave velocity and describes a generalized algorithm for locating a vibration source on a thin, laminated plate. With the different velocities of two modes based on Lamb wave dispersion, the method uses two sensors to locate the source on a semi-infinite interval of a plate. The experimental procedure supporting this method employs pencil lead breaks to simulate vibration sources on quasi-isotropic and unidirectional laminated plates. The transient signals generated in this way are transformed using a wavelet transform. The vibration source locations are then detected by utilizing the distinct wave velocities and arrival times of the symmetric and anti-symmetric wave modes. The method is an effective technique for identifying impact locations on plate-like structures.


Author(s):  
George M. Lloyd ◽  
Gu Hua ◽  
Ming L. Wang

Interdigitated surface and guided-wave transducers have only recently received attention as possible tools for non-destructive testing. This may be due in part to the increasing attention being paid to piezoelectric polymers as practical transduction materials for structural sensing and actuation. However, much remains to be done to produce a rugged, monolithic device oriented toward these sorts of applications, to characterize and optimize its passive and active response, to develop excitation strategies and signal processing algorithms that in tandem can be employed for arrayed structure monitoring applications. In this paper we confine ourselves to the first two topics and report on the development and proof-of-principle testing of a monolithic interdigitated polyvinyldine fluoride (PVDF) transducer. Specifically, we report on the design and response of an interdigitated transducer with relatively large finger spacings. The finger spacing yield measureable responses in the asymptotically slow single-mode region of Lamb wave dispersion behavior for frequency-thickness products which may be useful for nondestructive testing of many mechanical and civil structural systems.


2015 ◽  
Vol 41 (5) ◽  
pp. 1461-1472 ◽  
Author(s):  
Xinyu Zhang ◽  
Yin Yin ◽  
Yanrong Guo ◽  
Ning Fan ◽  
Haoming Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document