Cardiovascular responses to arm static exercise in men with thoracic spinal cord lesions

2011 ◽  
Vol 112 (2) ◽  
pp. 661-666 ◽  
Author(s):  
Keiko Sakamoto ◽  
Takeshi Nakamura ◽  
Yasunori Umemoto ◽  
Yumi Koike ◽  
Yusuke Sasaki ◽  
...  
1991 ◽  
Vol 260 (1) ◽  
pp. H267-H275 ◽  
Author(s):  
M. K. Bazil ◽  
F. J. Gordon

These studies investigated the role of spinal N-methyl-D-aspartic acid (NMDA) receptors in the mediation of cardiovascular responses evoked by L-glutamate (L-Glu) stimulation of the rostral ventrolateral medulla (RVM). Microinjections of L-Glu into the RVM of urethan-anesthetized rats increased mean arterial pressure (MAP) and heart rate. Intrathecal administration of the NMDA receptor antagonists D-(-)-2-amino-7-phosphonoheptanoic acid (D-AP-7) or 3-((+-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonate (CPP) reduced MAP and heart rate. Blockade of NMDA receptors by D-AP-7 or CPP in the caudal thoracic spinal cord markedly reduced RVM pressor responses with little effect on evoked tachycardia. Administration of D-AP-7 to the rostral thoracic spinal cord had no effect on RVM pressor or tachycardic responses. Intrathecal D-AP-7 and CPP abolished the cardiovascular effects of intrathecal NMDA without reducing those produced by intrathecal kainic acid or the quisqualate agonist DL-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). These results indicate that 1) tonic activation of spinal NMDA receptors participates in the maintenance of sympathetic outflow to the heart and blood vessels, 2) pressor responses evoked from the RVM require synaptic activation of spinal NMDA receptors, and 3) an excitatory amino acid may be the neurotransmitter of pressor pathways descending from the RVM to the spinal cord.


2014 ◽  
Vol 1 (8) ◽  
pp. 554-561 ◽  
Author(s):  
Darin T. Okuda ◽  
Kara Melmed ◽  
Takashi Matsuwaki ◽  
Anders Blomqvist ◽  
Arthur D. Bud Craig

1996 ◽  
Vol 81 (3) ◽  
pp. 1288-1294 ◽  
Author(s):  
C. L. Stebbins ◽  
S. Bonigut

This investigation tested the hypothesis that bradykinin causes excitatory effects in the thoracic spinal cord that augment the exercise pressor reflex. Thus we performed 30 s of electrically stimulated static contraction of the hindlimb in the anesthetized cat (alpha-chloralose) to provoke reflex-induced increases in mean arterial pressure, maximal rate of rise of left ventricular pressure (dP/dt), and heart rate (i.e., the exercise pressor reflex). These three responses were compared before and 15 min after intrathecal injection of 2 micrograms (n = 3), 10 micrograms (n = 6), or 50 micrograms (n = 3) of the selective bradykinin B2- receptor antagonist HOE-140 into the thoracic spinal cord or 10 micrograms of this antagonist into the lumbar (n = 3) spinal cord. In three of the six cats in which 10 micrograms of HOE-140 were injected into the thoracic spinal cord, an additional contraction was performed 60-90 min after treatment. The 2-microgram dose of HOE-140 had no effect on the exercise pressor reflex. Injection of 10 micrograms of this antagonist into the thoracic spinal cord reduced the contraction-evoked pressor, maximal dP/dt, and heart rate responses by 49 +/-7, 58 +/- 4, and 64 +/- 13%, respectively (P < 0.05). Fifty micrograms of HOE-140 failed to attenuate these responses further. In the three cats in which an additional contraction was performed 60-90 min after treatment with 10 micrograms of the antagonist, blood pressure and dP/dt responses had returned, in part, toward initial values. Neither intravenous (n = 3) nor intrathecal injection of 10 micrograms of HOE-140 into the lumbar spinal cord had any effect on the contraction-induced cardiovascular responses. Thoracic injection of 50-200 ng of bradykinin provoked a pressor response of 26 +/- 5 mmHg that was abolished by a similar injection of 10 micrograms of HOE-140. These data suggest that endogenous bradykinin contributes to the exercise pressor reflex by an excitatory action in the thoracic spinal cord.


2021 ◽  
Vol 12 ◽  
Author(s):  
Charidimos Tsagkas ◽  
Maria Janina Wendebourg ◽  
Matthias Mehling ◽  
Johannes Lorscheider ◽  
Philippe Lyrer ◽  
...  

Objective: Inflammatory polyradiculomyelitis belongs to a rare group of immune-mediated diseases affecting both the central and peripheral nervous system. We aimed to describe an unusual presentation of acute polyradiculomyelitis with marked spinal cord lesions restricted to the gray matter.Methods: Thorough examination of two case reports including clinical, MRI, serologic, electrophysiologic and CSF examinations as well as short-term follow-up.Results: We present two adult patients with acute polyradiculomyelitis and unusual spinal cord lesions restricted to the gray matter on MRI. The clinical presentation, serologic, electrophysiologic and CSF features of the two patients varied, whereas both patients demonstrated severe, asymmetrical, predominantly distal, motor deficits of the lower extremities as well as bladder and bowel dysfunction. Both patients only partially responded to anti-inflammatory treatment. Severe motor impairment and bladder dysfunction persisted even months after symptom onset.Conclusions: To our best of knowledge, these are the first reports of acute polyradiculomyelitis with distinct involvement of the lower thoracic spinal cord gray matter. Currently, it remains unclear whether gray matter lesions reflect a separate pathophysiologic mechanism or an exceedingly rare presentation of spinal cord involvement in acute polyradiculomyelitis.


Spinal Cord ◽  
2015 ◽  
Vol 53 (7) ◽  
pp. 520-525 ◽  
Author(s):  
L H Hua ◽  
S L Donlon ◽  
M J Sobhanian ◽  
S M Portner ◽  
D T Okuda

2020 ◽  
Vol 128 (3) ◽  
pp. 554-564
Author(s):  
Heidi L. Lujan ◽  
Stephen E. DiCarlo

A wide range of spinal cord levels (cervical 8–thoracic 6) project to the stellate ganglia (which provides >90% of sympathetic supply to the heart), with a peak at the thoracic 2 (T2) level. We hypothesize that despite the proximity of the lesions, high thoracic spinal cord injuries (i.e., T2–3 SCI) do not closely mimic the hemodynamic responses recorded with cervical SCI (i.e., C6–7 SCI). To test this hypothesis, rats were instrumented with an intra-arterial telemetry device (Data Sciences International PA-C40) for recording arterial pressure, heart rate, and locomotor activity as well as a catheter within the intraperitoneal space. After recovery, rats were subjected to complete C6–7 spinal cord transection ( n = 8), sham transection ( n = 4), or T2–3 spinal cord transection ( n = 7). After the spinal cord transection or sham transection, arterial pressure, heart rate, and activity counts were recorded in conscious animals, in a thermoneutral environment, for 20 s every minute, 24 h/day for 12 consecutive weeks. After 12 wk, chronic reflex- and stress-induced cardiovascular and hormonal responses were compared in all groups. C6–7 rats had hypotension, bradycardia, and reduced physical activity. In contrast, T2–3 rats were tachycardic. C6–7 rats compared with T2–3 and spinal intact rats also had reduced cardiac sympathetic tonus, reduced reflex- and stress induced cardiovascular responses, and reduced sympathetic support of blood pressure as well as enhanced reliance on angiotensin to maintain arterial blood pressure. Thus injuries above and below the peak level (T2) of spinal cord projections to the stellate ganglia have remarkably different outcomes. NEW & NOTEWORTHY Twelve consecutive weeks of resting hemodynamic data as well as chronic reflex- and stress-induced cardiovascular, autonomic, and hormonal responses were compared in spinal intact and C6–7 and T2–3 spinal cord-transected rats. C6–7 rats compared with T2–3 and spinal intact rats had reduced cardiac sympathetic tonus, reduced reflex- and stress-induced cardiovascular responses, and reduced sympathetic support of blood pressure as well as enhanced reliance on angiotensin to maintain arterial blood pressure. Thus injuries above and below the peak level (T2) of spinal cord projections to the stellate ganglia have remarkably different outcomes.


2001 ◽  
Vol 45 (4) ◽  
pp. 353 ◽  
Author(s):  
Sung Chan Jin ◽  
Seoung Ro Lee ◽  
Dong Woo Park ◽  
Kyung Bin Joo

2018 ◽  
Vol 46 (05) ◽  
pp. 323-329 ◽  
Author(s):  
Nele Ondreka ◽  
Sara Malberg ◽  
Emma Laws ◽  
Martin Schmidt ◽  
Sabine Schulze

SummaryA 2-year-old male neutered mixed breed dog with a body weight of 30 kg was presented for evaluation of a soft subcutaneous mass on the dorsal midline at the level of the caudal thoracic spine. A further clinical sign was intermittent pain on palpation of the area of the subcutaneous mass. The owner also described a prolonged phase of urination with repeated interruption and re-initiation of voiding. The findings of the neurological examination were consistent with a lesion localization between the 3rd thoracic and 3rd lumbar spinal cord segments. Magnetic resonance imaging revealed a spina bifida with a lipomeningocele and diplomyelia (split cord malformation type I) at the level of thoracic vertebra 11 and 12 and secondary syringomyelia above the aforementioned defects in the caudal thoracic spinal cord. Surgical resection of the lipomeningocele via a hemilaminectomy was performed. After initial deterioration of the neurological status postsurgery with paraplegia and absent deep pain sensation the dog improved within 2 weeks to non-ambulatory paraparesis with voluntary urination. Six weeks postoperatively the dog was ambulatory, according to the owner. Two years after surgery the owner recorded that the dog showed a normal gait, a normal urination and no pain. Histopathological diagnosis of the biopsied material revealed a lipomeningocele which confirmed the radiological diagnosis.


Sign in / Sign up

Export Citation Format

Share Document