scholarly journals Mechanisms of vitamin D on skeletal muscle function: oxidative stress, energy metabolism and anabolic state

2019 ◽  
Vol 119 (4) ◽  
pp. 825-839 ◽  
Author(s):  
Katarzyna Patrycja Dzik ◽  
Jan Jacek Kaczor
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Z. Darabseh ◽  
Thomas M. Maden-Wilkinson ◽  
George Welbourne ◽  
Rob C. I. Wüst ◽  
Nessar Ahmed ◽  
...  

AbstractCigarette smoking has a negative effect on respiratory and skeletal muscle function and is a risk factor for various chronic diseases. To assess the effects of 14 days of smoking cessation on respiratory and skeletal muscle function, markers of inflammation and oxidative stress in humans. Spirometry, skeletal muscle function, circulating carboxyhaemoglobin levels, advanced glycation end products (AGEs), markers of oxidative stress and serum cytokines were measured in 38 non-smokers, and in 48 cigarette smokers at baseline and after 14 days of smoking cessation. Peak expiratory flow (p = 0.004) and forced expiratory volume in 1 s/forced vital capacity (p = 0.037) were lower in smokers compared to non-smokers but did not change significantly after smoking cessation. Smoking cessation increased skeletal muscle fatigue resistance (p < 0.001). Haemoglobin content, haematocrit, carboxyhaemoglobin, total AGEs, malondialdehyde, TNF-α, IL-2, IL-4, IL-6 and IL-10 (p < 0.05) levels were higher, and total antioxidant status (TAS), IL-12p70 and eosinophil numbers were lower (p < 0.05) in smokers. IL-4, IL-6, IL-10 and IL-12p70 had returned towards levels seen in non-smokers after 14 days smoking cessation (p < 0.05), and IL-2 and TNF-α showed a similar pattern but had not yet fully returned to levels seen in non-smokers. Haemoglobin, haematocrit, eosinophil count, AGEs, MDA and TAS did not significantly change with smoking cessation. Two weeks of smoking cessation was accompanied with an improved muscle fatigue resistance and a reduction in low-grade systemic inflammation in smokers.


2014 ◽  
pp. 373-390
Author(s):  
Carlos da Justa Pinheiro ◽  
Marco Salomão Fortes ◽  
Rui Curi

2016 ◽  
Vol 121 (5) ◽  
pp. 1047-1052 ◽  
Author(s):  
Cory W. Baumann ◽  
Dongmin Kwak ◽  
Haiming M. Liu ◽  
LaDora V. Thompson

With advancing age, skeletal muscle function declines as a result of strength loss. These strength deficits are largely due to reductions in muscle size (i.e., quantity) and its intrinsic force-producing capacity (i.e., quality). Age-induced reductions in skeletal muscle quantity and quality can be the consequence of several factors, including accumulation of reactive oxygen and nitrogen species (ROS/RNS), also known as oxidative stress. Therefore, the purpose of this mini-review is to highlight the published literature that has demonstrated links between aging, oxidative stress, and skeletal muscle quantity or quality. In particular, we focused on how oxidative stress has the potential to reduce muscle quantity by shifting protein balance in a deficit, and muscle quality by impairing activation at the neuromuscular junction, excitation-contraction (EC) coupling at the ryanodine receptor (RyR), and cross-bridge cycling within the myofibrillar apparatus. Of these, muscle weakness due to EC coupling failure mediated by RyR dysfunction via oxidation and/or nitrosylation appears to be the strongest candidate based on the publications reviewed. However, it is clear that age-associated oxidative stress has the ability to alter strength through several mechanisms and at various locations of the muscle fiber.


2014 ◽  
Vol 17 (6) ◽  
pp. 539-545 ◽  
Author(s):  
Pamela R. von Hurst ◽  
Kathryn L. Beck

2005 ◽  
Vol 30 (5) ◽  
pp. 576-590 ◽  
Author(s):  
David J. Baker ◽  
Russell T. Hepple

The pump-perfused rat hindlimb model, in various forms, has been in use for several decades. There are many applications for this model, owing to the ability to control the content and rate of perfusion. In the context of exercise physiology this model has been put to particularly good use. In this report we summarize some of the central surgical differences between different versions of the pump-perfused rat hindlimb model, including the double hindlimb + trunk, double hindlimb alone, single hindlimb, and distal hindlimb-alone models. We also summarize specific elements of the perfusion medium and measurement of force used in our lab during assessment of muscle metabolic and contractile responses, and illustrate some of the differences from the in vivo condition that merit consideration. We then provide specific examples of how the single pump-perfused hindlimb and distal hindlimb-alone versions of this model have been used to study muscle function and energy metabolism. In this context we show how this model can be used to permit the experimenter to manipulate and control the rate of O2delivery and to add specific compounds that inhibit a particular aspect of muscle metabolism, such that in combination with measurements of the flux of specific substances across the muscle and/or fast-freezing of muscle after contractions, more can be understood about the metabolic state of the contracting muscles. Key words: aerobic metabolism, mitochondria, aging, adaptation


2014 ◽  
Vol 76 ◽  
pp. S29
Author(s):  
Matthew David Campbell ◽  
Ying Ann Chiao ◽  
Matthew J Gaffrey ◽  
Danijel Djukovic ◽  
Haiwei Gu ◽  
...  

1986 ◽  
Vol 7 (4) ◽  
pp. 434-448 ◽  
Author(s):  
RICARDO BOLAND

Sign in / Sign up

Export Citation Format

Share Document