AVP-independent high osmotic water permeability of frog urinary bladder and autacoids

1996 ◽  
Vol 433 (1-2) ◽  
pp. 136-145 ◽  
Author(s):  
Y. V. Natochin ◽  
R. G. Parnova ◽  
E. I. Shakhmatova ◽  
Y. Y. Komissarchik ◽  
M. S. Brudnaya ◽  
...  
2007 ◽  
Vol 293 (1) ◽  
pp. R528-R537 ◽  
Author(s):  
Vera Bachteeva ◽  
Ekaterina Fock ◽  
Elena Lavrova ◽  
Svetlana Nikolaeva ◽  
Stepan Gambaryan ◽  
...  

PGE2 is a well-known inhibitor of the antidiuretic hormone-induced increase of osmotic water permeability (OWP) in different osmoregulatory epithelia; however, the mechanisms underlying this effect of PGE2 are not completely understood. Here, we report that, in the frog Rana temporaria urinary bladder, EP1-receptor-mediated inhibition of arginine-vasotocin (AVT)-induced OWP by PGE2 is attributed to increased generation of nitric oxide (NO) in epithelial cells. It was shown that the inhibitory effect of 17-phenyl-trinor-PGE2 (17-ph-PGE2), an EP1 agonist, on AVT-induced OWP was significantly reduced in the presence of 7-nitroindazole (7-NI), a neuronal NO synthase (nNOS) inhibitor. NO synthase (NOS) activity in both lysed and intact epithelial cells measured as a rate of conversion of l-[3H]arginine to l-[3H]citrulline was Ca2+ dependent and inhibited by 7-NI. PGE2 and 17-ph-PGE2, but not M&B-28767 (EP3 agonist) or butaprost (EP2 agonist), stimulated NOS activity in epithelial cells. The above effect of PGE2 was abolished in the presence of SC-19220, an EP1 antagonist. 7-NI reduced the stimulatory effect of 17-ph-PGE2 on NOS activity. 17-ph-PGE2 increased intracellular Ca2+ concentration and cGMP in epithelial cells. Western blot analysis revealed an nNOS expression in epithelial cells. These results show that the inhibitory effect of PGE2 on AVT-induced OWP in the frog urinary bladder is based at least partly on EP1-receptor-mediated activation of the NO/cGMP pathway, suggesting a novel cross talk between AVT, PGE2, and nNOS that may be important in the regulation of water transport.


1989 ◽  
Vol 94 (6) ◽  
pp. 1101-1115 ◽  
Author(s):  
L B Shi ◽  
A S Verkman

The regulation of transepithelial water permeability in toad urinary bladder is believed to involve a cycling of endocytic vesicles containing water transporters between an intracellular compartment and the cell luminal membrane. Endocytic vesicles arising from luminal membrane were labeled selectively in the intact toad bladder with the impermeant fluid-phase markers 6-carboxyfluorescein (6CF) or fluorescein-dextran. A microsomal preparation containing labeled endocytic vesicles was prepared by cell scraping, homogenization, and differential centrifugation. Osmotic water permeability was measured by a stopped-flow fluorescence technique in which microsomes containing 50 mM mannitol, 5 mM K phosphate, pH 8.5 were subject to a 60-mM inwardly directed gradient of sucrose; the time course of endosome volume, representing osmotic water transport, was inferred from the time course of fluorescence self-quenching. Endocytic vesicles were prepared from toad bladders with hypoosmotic lumen solution treated with (group A) or without (group B) serosal vasopressin at 23 degrees C, and bladders in which endocytosis was inhibited by treatment with vasopressin at 0-2 degrees C (group C), or with vasopressin plus sodium azide at 23 degrees C (group D). Stopped-flow results in all four groups showed a slow rate of 6CF fluorescence decrease (time constants 1.0-1.7 s for exponential fit) indicating a component of nonendocytic 6CF entrapment into sealed vesicles. However, in vesicles from group A only, there was a very rapid 6CF fluorescence decrease (time constant 9.6 +/- 0.2 ms, SEM, 18 separate preparations) with an osmotic water permeability coefficient (Pf) of greater than 0.1 cm/s (18 degrees C) and activation energy of 3.9 +/- 0.8 kcal/mol (16 kJ/mol). Pf was inhibited reversibly by greater than 60% by 1 mM HgCl2. The rapid fluorescence decrease was absent in vesicles in groups B, C, and D. These results demonstrate the presence of functional water transporters in vasopressin-induced endocytic vesicles from toad bladder, supporting the hypothesis that water channels are cycled to and from the luminal membrane and providing a functional marker for the vasopressin-sensitive water channel. The calculated Pf in the vasopressin-induced endocytic vesicles is the highest Pf reported for any biological or artificial membrane.


Author(s):  
Yu.V. Natochin ◽  
E.I. Shakhmatova ◽  
Ya.Yu. Komissarchik ◽  
E.S. Snigirevskaya ◽  
N.P. Prutskova ◽  
...  

1981 ◽  
Vol 240 (1) ◽  
pp. F63-F69
Author(s):  
W. A. Kachadorian ◽  
J. Muller ◽  
S. Rudich ◽  
V. A. DiScala

Membrane fluidity, urea permeability, and osmotic water permeability in toad urinary bladder are regularly enhanced by antidiuretic hormone (ADH). In addition, organized intramembranous particle aggregates, which correlate specifically with hormonally stimulated water permeability, are found in granular cell luminal membranes consequent to ADH stimulation. In this investigation ADH-stimulated changes in urea and osmotic water permeability and luminal membrane aggregates at room temperature (24.8 +/- 0.4 degrees C) and in the cold 10.6 +/- 0.2 degrees) were compared with corresponding changes in membrane fluidity, as assessed by n-butyramide permeability. Although a critical level of membrane fluidity is undoubtedly required, the occurrence of aggregates in the luminal membrane is independent of an accompanying hormonally induced change of membrane fluidity. ADH-stimulated osmotic water permeability in toad bladder is also independent of the coincident change in membrane fluidity, and as a process almost certainly involves membrane channels, not a solubility-diffusion process through membrane lipids. For ADH-stimulated transbladder urea movement, channels seem to be involved as well, and the change induced in membrane fluidity by ADH could be an underlying factor in their formation.


1981 ◽  
Vol 77 (5) ◽  
pp. 549-570 ◽  
Author(s):  
T C Terwilliger ◽  
A K Solomon

The osmotic water permeability of human red cells has been reexamined with a stopped-flow device and a new perturbation technique. Small osmotic gradients are used to minimize the systematic error caused by nonlinearities in the relationship between cell volume and light scattering. Corrections are then made for residual systematic error. Our results show that the hydraulic conductivity, Lp, is essentially independent of the direction of water flow and of osmolality in the range 184-365 mosM. the mean value of Lp obtained obtained was 1.8 +/- 0.1 (SEM) X 10-11 cm3 dyne -1 s-1.


1982 ◽  
Vol 242 (4) ◽  
pp. F321-F330 ◽  
Author(s):  
E. Gonzalez ◽  
P. Carpi-Medina ◽  
G. Whittembury

Proximal straight tubules were dissected and mounted in a chamber with their lumina occluded. The well-stirred bath could be 95% changed within 84 ms to set up osmotic gradients (delta Coi) across the peritubular cell aspect. Volume changes (less than or equal to 10 pl/mm) were estimated from continuous records of diameter changes (error less than 0.1 micrometers). delta Coi greater than or equal to 2-3 mosM could be discerned. delta Coi values from 10 to 44 mosM were used to evaluate Posc, the cell osmotic water permeability coefficient, and extrapolated to delta Coi = 0. Posc = 25.1 (+/- 2.3) X 10(-4) cm3.s-1.osM-1.cm2 tubular surface area-1. These values are lower than those reported for Pose, the transepithelial osmotic water permeability coefficient, and become lower if corrected for the real (infolded) peritubular cell surface area. Thus, for a given osmotic difference, transcellular water flow finds a higher resistance than paracellular water flow. Experiments were also performed with delta Coi greater than 100 mosM, but interpretation of these data is difficult because of the presence of volume regulatory phenomena and other undesirable effects.


2019 ◽  
Vol 316 (2) ◽  
pp. F253-F262 ◽  
Author(s):  
Josephine K. Liwang ◽  
Joseph A. Ruiz ◽  
Lauren M. LaRocque ◽  
Fitra Rianto ◽  
Fuying Ma ◽  
...  

Hypertonicity increases water permeability, independently of vasopressin, in the inner medullary collecting duct (IMCD) by increasing aquaporin-2 (AQP2) membrane accumulation. We investigated whether protein kinase C (PKC) and adenosine monophosphate kinase (AMPK) are involved in hypertonicity-regulated water permeability. Increasing perfusate osmolality from 150 to 290 mosmol/kgH2O and bath osmolality from 290 to 430 mosmol/kgH2O significantly stimulated osmotic water permeability. The PKC inhibitors chelerythrine (10 µM) and rottlerin (50 µM) significantly reversed the increase in osmotic water permeability stimulated by hypertonicity in perfused rat terminal IMCDs. Chelerythrine significantly increased phosphorylation of AQP2 at S261 but not at S256. Previous studies show that AMPK is stimulated by osmotic stress. We tested AMPK phosphorylation under hypertonic conditions. Hypertonicity significantly increased AMPK phosphorylation in inner medullary tissues. Blockade of AMPK with Compound C decreased hypertonicity-stimulated water permeability but did not alter phosphorylation of AQP2 at S256 and S261. AICAR, an AMPK stimulator, caused a transient increase in osmotic water permeability and increased phosphorylation of AQP2 at S256. When inner medullary tissue was treated with the PKC activator phorbol dibutyrate (PDBu), the AMPK activator metformin, or both, AQP2 phosphorylation at S261 was decreased with PDBu or metformin alone, but there was no additive effect on phosphorylation with PDBu and metformin together. In conclusion, hypertonicity regulates water reabsorption by activating PKC. Hypertonicity-stimulated water reabsorption by PKC may be related to the decrease in endocytosis of AQP2. AMPK activation promotes water reabsorption, but the mechanism remains to be determined. PKC and AMPK do not appear to act synergistically to regulate water reabsorption.


Sign in / Sign up

Export Citation Format

Share Document