Association between C-reactive protein levels and outcome in acute lung injury in children

2013 ◽  
Vol 172 (8) ◽  
pp. 1105-1110 ◽  
Author(s):  
M. Bruijn ◽  
E. M. Jansen ◽  
T. Klapwijk ◽  
J. H. van der Lee ◽  
R. R. van Rijn ◽  
...  
2012 ◽  
Vol 27 (5) ◽  
pp. 524.e1-524.e6 ◽  
Author(s):  
Kosaku Komiya ◽  
Hiroshi Ishii ◽  
Shinji Teramoto ◽  
Osamu Takahashi ◽  
Hidehiko Yamamoto ◽  
...  

Oncotarget ◽  
2016 ◽  
Vol 7 (47) ◽  
pp. 78048-78054 ◽  
Author(s):  
Rick Kapur ◽  
Michael Kim ◽  
Matthew T. Rondina ◽  
Leendert Porcelijn ◽  
John W. Semple

CHEST Journal ◽  
1994 ◽  
Vol 105 (3) ◽  
pp. 101S-101 ◽  
Author(s):  
R. O. Webster ◽  
R. Heuertz ◽  
D. Xia ◽  
D. Samols

CHEST Journal ◽  
1994 ◽  
Vol 105 (3) ◽  
pp. 101S ◽  
Author(s):  
Robert O. Webster ◽  
Rita Heuertz ◽  
Dongyuan Xia ◽  
David Samols

1997 ◽  
Vol 3 (12) ◽  
pp. 539-545 ◽  
Author(s):  
Rita M. Heuertz ◽  
Robert O. Webster

Blood ◽  
2015 ◽  
Vol 126 (25) ◽  
pp. 2747-2751 ◽  
Author(s):  
Rick Kapur ◽  
Michael Kim ◽  
Shanjeevan Shanmugabhavananthan ◽  
Jonathan Liu ◽  
Yuan Li ◽  
...  

Key Points CRP enhances antibody-mediated lung damage when infused into TRALI-resistant mice. CRP and TRALI-inducing antibodies generate a synergistic increase in MIP-2 production and pulmonary neutrophil accumulation in vivo.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3561-3561
Author(s):  
Rick Kapur ◽  
Michael Kim ◽  
Shanjee Shanmugabhavananthan ◽  
Edwin R. Speck ◽  
Rukhsana Aslam ◽  
...  

Abstract Transfusion-related acute lung injury (TRALI), a syndrome characterized by respiratory distress triggered by blood transfusions, is the leading cause of transfusion-related mortality. Mostly, TRALI has been attributed to passive infusion of human leucocyte antigen (HLA) and human neutrophil antigen (HNA) antibodies present in the transfused blood product. Several animal models have been developed to study the pathogenesis of antibody-mediated TRALI and various mechanisms for TRALI induction have been suggested, including involvement of endothelial cells, neutrophils and monocytes. In 2006, a murine of model of antibody-mediated TRALI was developed using a monoclonal MHC class I antibody (clone 34-1-2s). This antibody was shown to cause significant lung damage (excess lung water: pulmonary edema) within 2 hours of administration into BALB/c mice, which in follow-up studies was only reproducible after initial priming with the gram-negative endotoxin lipopolysaccharide (LPS). 34-1-2s was also shown to cause severe lung damage in severe combined immunodeficient (SCID) mice. We investigated 34-1-2s mediated TRALI in BALB/c mice, without LPS priming, and found no difference in TRALI severity when compared with injection with an control isotype antibody for 34-1-2s (Isotype Mouse IgG2a antibody), as examined by lung wet-to-dry ratios, a measure for pulmonary edema. Recently it was described that the acute phase protein C-reactive protein (CRP), heavily up-regulated during acute infections and also present at lower levels in healthy individuals, was able to enhance antibody-mediated platelet destruction both in vitro and in vivo via Fc-receptor mediated phagocytic responses. Considering the fact that TRALI has been shown to be mainly antibody-mediated, plus the fact that it has been suggested to be an Fc-dependent process as well, we investigated the effect of CRP in a murine antibody-mediated TRALI. We tested if CRP would be able to enhance antibody-mediated TRALI in the murine 34-1-2s based BALB/c TRALI model. For that purpose, we co-injected CRP together with 34-1-2s and compared that to co-injection of CRP together with control isotype mouse IgG2a or to injection with CRP alone. We found that CRP+34-1-2s injection resulted in significantly higher lung damage than CRP+isotype antibody, as well as than CRP alone, with at least 43% of the mice in the CRP+34-1-2s group having a lung wet-to-dry ratio of higher than 5, which is considered to represent severe lung damage. As the monocyte-derived neutrophil chemoattractant macrophage inflammatory protein 2 (MIP-2: murine equivalent of human IL-8) was recently shown to play a central role in murine (SCID) 34-1-2s-mediated TRALI induction, we measured MIP-2 values in our BALB/c TRALI model and found that CRP alone was capable of producing high levels of MIP-2, which were found to be even more increased when 34-1-2s was co-injected with CRP. We propose a mechanism in which CRP plays a synergistic role with 34-1-2s antibody to significantly increase the induction of antibody-mediated TRALI via enhanced stimulation of monocyte-derived MIP-2 secretion. Disclosures No relevant conflicts of interest to declare.


VASA ◽  
2015 ◽  
Vol 44 (3) ◽  
pp. 0187-0194 ◽  
Author(s):  
Xiaoni Chang ◽  
Jun Feng ◽  
Litao Ruan ◽  
Jing Shang ◽  
Yanqiu Yang ◽  
...  

Background: Neovascularization is one of the most important risk factors for unstable plaque. This study was designed to correlate plaque thickness, artery stenosis and levels of serum C-reactive protein with the degree of intraplaque enhancement determined by contrast-enhanced ultrasound. Patients and methods: Contrast-enhanced ultrasound was performed on 72 carotid atherosclerotic plaques in 48 patients. Contrast enhancement within the plaque was categorized as grade 1, 2 or 3. Maximum plaque thickness was measured in short-axis view. Carotid artery stenosis was categorized as mild, moderate or severe. Results: Plaque contrast enhancement was not associated with the degree of artery stenosis or with plaque thickness. Serum C-reactive protein levels were positively correlated with the number of new vessels in the plaque. C-reactive protein levels increased in the three groups(Grade 1: 3.72±1.79mg/L; Grade 2: 7.88±4.24 mg/L; Grade 3: 11.02±3.52 mg/L), with significant differences among them (F=10.14, P<0.01), and significant differences between each two groups (P<0.05). Spearman’s rank correlation analysis showed that serum C-reactive protein levels were positively correlated with the degree of carotid plaque enhancement (Rs =0.69, P<0.01). Conclusions: The combination of C-reactive protein levels and intraplaque neovascularization detected by contrast-enhanced ultrasound may allow more accurate evaluation of plaque stability.


Sign in / Sign up

Export Citation Format

Share Document