Transgenerational effects of global environmental change: long-term CO2 and nitrogen treatments influence offspring growth response to elevated CO2

Oecologia ◽  
2008 ◽  
Vol 158 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Jennifer A. Lau ◽  
Jill Peiffer ◽  
Peter B. Reich ◽  
Peter Tiffin
2013 ◽  
Vol 40 (2) ◽  
pp. 137 ◽  
Author(s):  
Sharon B. Gray ◽  
Reid S. Strellner ◽  
Kannan K. Puthuval ◽  
Christopher Ng ◽  
Ross E. Shulman ◽  
...  

The rate of N2 fixation by a leguminous plant is a product of the activity of individual nodules and the number of nodules. Initiation of new nodules and N2 fixation per nodule are highly sensitive to environmental conditions. However, the effects of global environmental change on nodulation in the field are largely unknown. It is also unclear whether legumes regulate nodulation in response to environment solely by varying root production or also by varying nodule density per unit of root length. This study utilised minirhizotron imaging as a novel in situ method for assessing the number, size and distribution of nodules in field-grown soybean (Glycine max (L.) Merr.) exposed to elevated atmospheric CO2 ([CO2]) and reduced precipitation. We found that nodule numbers were 134–229% greater in soybeans grown at elevated [CO2] in combination with reduced precipitation, and this response was driven by greater nodule density per unit of root length. The benefits of additional nodules were probably offset by an unfavourable distribution of nodules in shallow, dry soil in reduced precipitation treatment under elevated [CO2] but not ambient [CO2]. In fact, significant decreases in seed and leaf nitrogen concentration also occurred only in elevated [CO2] with reduced precipitation. This study demonstrates the potential of minirhizotron imaging to reveal previously uncharacterised changes in nodule production and distribution in response to global environmental change.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer E. Thines ◽  
Ingrid A. Ukstins ◽  
Corey Wall ◽  
Mark Schmitz

AbstractThe main phase of silicic volcanism from the Afro-Arabian large igneous province preserves some of the largest volcanic eruptions on Earth, with six units totaling >8,600 km3 dense rock equivalent (DRE). The large volumes of rapidly emplaced individual eruptions present a case study for examining the tempo of voluminous silicic magma generation and emplacement. Here were report high-precision 206Pb/238U zircon ages and show that the largest sequentially dated eruptions occurred within 48 ± 34 kyr (29.755 ± 0.023 Ma to 29.707 ± 0.025 Ma), yielding the highest known long-term volumetric extrusive rate of silicic volcanism on Earth. While these are the largest known sequential silicic supereruptions, they did not cause major global environmental change. We also provide a robust tie-point for calibration of the geomagnetic polarity timescale by integrating 40Ar/39Ar data with our 206Pb/238U ages to yield new constraints on the duration of the C11n.1r Subchron.


2018 ◽  
Author(s):  
Patricia L M Lang ◽  
Franziska M Willems ◽  
J F Scheepens ◽  
Hernán A Burbano ◽  
Oliver Bossdorf

During the last centuries, humans have transformed global ecosystems. With their temporal dimension, herbaria provide the otherwise scarce long-term data crucial to track ecological and evolutionary changes over these centuries of global change. The sheer size of herbaria, together with their increasing digitization and the possibility of sequencing DNA from the preserved plant material, makes them invaluable resources to understand ecological and evolutionary species responses to global environmental change. Following the chronology of global change, we highlight how herbaria can inform about long-term effects on plants of at least four of the main drivers of global change: pollution, habitat change, climate change, and invasive species. We summarize how herbarium specimens so far have been used in global change research, discuss future opportunities and challenges posed by the nature of these data, and advocate for an intensified use of these 'windows into the past' for global change research and beyond.


2018 ◽  
Author(s):  
Patricia L M Lang ◽  
Franziska M Willems ◽  
J F Scheepens ◽  
Hernán A Burbano ◽  
Oliver Bossdorf

During the last centuries, humans have transformed global ecosystems. With their temporal dimension, herbaria provide the otherwise scarce long-term data crucial to track ecological and evolutionary changes over these centuries of global change. The sheer size of herbaria, together with their increasing digitization and the possibility of sequencing DNA from the preserved plant material, makes them invaluable resources to understand ecological and evolutionary species responses to global environmental change. Following the chronology of global change, we highlight how herbaria can inform about long-term effects on plants of at least four of the main drivers of global change: pollution, habitat change, climate change, and invasive species. We summarize how herbarium specimens so far have been used in global change research, discuss future opportunities and challenges posed by the nature of these data, and advocate for an intensified use of these 'windows into the past' for global change research and beyond.


2010 ◽  
Vol 8 (2) ◽  
pp. 193-208 ◽  
Author(s):  
O. William Purvis ◽  
I. Tittley ◽  
P. D. Jim Chimonides ◽  
Roger Bamber ◽  
Peta A. Hayes ◽  
...  

2020 ◽  
Vol 12 (2) ◽  
pp. 1217-1243 ◽  
Author(s):  
Han Liu ◽  
Peng Gong ◽  
Jie Wang ◽  
Nicholas Clinton ◽  
Yuqi Bai ◽  
...  

Abstract. Land cover is the physical material at the surface of the Earth. As the cause and result of global environmental change, land cover change (LCC) influences the global energy balance and biogeochemical cycles. Continuous and dynamic monitoring of global LC is urgently needed. Effective monitoring and comprehensive analysis of LCC at the global scale are rare. With the latest version of GLASS (Global Land Surface Satellite) CDRs (climate data records) from 1982 to 2015, we built the first record of 34-year-long annual dynamics of global land cover (GLASS-GLC) at 5 km resolution using the Google Earth Engine (GEE) platform. Compared to earlier global land cover (LC) products, GLASS-GLC is characterized by high consistency, more detail, and longer temporal coverage. The average overall accuracy for the 34 years each with seven classes, including cropland, forest, grassland, shrubland, tundra, barren land, and snow/ice, is 82.81 % based on 2431 test sample units. We implemented a systematic uncertainty analysis and carried out a comprehensive spatiotemporal pattern analysis. Significant changes at various scales were found, including barren land loss and cropland gain in the tropics, forest gain in the Northern Hemisphere, and grassland loss in Asia. A global quantitative analysis of human factors showed that the average human impact level in areas with significant LCC was about 25.49 %. The anthropogenic influence has a strong correlation with the noticeable vegetation gain, especially for forest. Based on GLASS-GLC, we can conduct long-term LCC analysis, improve our understanding of global environmental change, and mitigate its negative impact. GLASS-GLC will be further applied in Earth system modeling to facilitate research on global carbon and water cycling, vegetation dynamics, and climate change. The GLASS-GLC data set presented in this article is available at https://doi.org/10.1594/PANGAEA.913496 (Liu et al., 2020).


2019 ◽  
Author(s):  
Han Liu ◽  
Peng Gong ◽  
Jie Wang ◽  
Nicholas Clinton ◽  
Yuqi Bai ◽  
...  

Abstract. Land cover (LC) is an important terrestrial variable and key information for understanding the interaction between human activities and global change. As the cause and result of global environmental change, land cover change (LCC) influences the global energy balance and biogeochemical cycles. Continuous and dynamic monitoring of global LC is urgently needed. Effective monitoring and comprehensive analysis of LCC at the global scale is rare. Using the latest version of GLASS (The Global Land Surface Satellite) CDRs (Climate Data Records) from 1982 to 2015, we built the first set of CDRs to record the annual dynamics of global land cover (GLASS-GLC) at 5 km resolution using the Google Earth Engine (GEE) platform. Compared to earlier global LC products, GLASS-GLC is characterized by high consistency, more detailed classes, and longer temporal coverage. The average overall accuracy is 85 %. We implemented a systematic uncertainty analysis at the global scale. In addition, we carried out a comprehensive spatiotemporal pattern analysis. Significant changes and patterns at various scales were found, including deforestation and agricultural land expansion in the tropics, afforestation and forest expansion in northern high latitudes, land degradation in Asian grassland and reclamation in northeast China, etc. A global quantitative analysis of human factors showed that the average human impact level in areas with significant LCC was about 25.49 %. The anthropogenic influence has a strong correlation with the noticeable Earth greening. Based on GLASS-GLC, we can conduct long-term LCC analysis, improve our understanding of global environmental change, and mitigate its negative impact. GLASS-GLC will be further applied in Earth system modeling in order to facilitate research on global carbon and water cycling, vegetation dynamics and climate change. The data set presented in this article is published in the Tagged Image File Format (TIFF) at https://doi.org/10.1594/PANGAEA.898096. The data set includes 34 TIFF files and one instruction doc file.


Sign in / Sign up

Export Citation Format

Share Document