Influence of hydrological regime and land cover on traits and potential export capacity of adult aquatic insects from river channels

Oecologia ◽  
2015 ◽  
Vol 180 (2) ◽  
pp. 551-566 ◽  
Author(s):  
M. J. Greenwood ◽  
D. J. Booker
Author(s):  
Gražina ŽIBIENĖ ◽  
Alvydas ŽIBAS ◽  
Goda BLAŽAITYTĖ

The construction of dams in rivers negatively affects ecosystems because dams violate the continuity of rivers, transform the biological and physical structure of the river channels, and the most importantly – alter the hydrological regime. The impact on the hydrology of the river can occur through reducing or increasing flows, altering seasonality of flows, changing the frequency, duration and timing of flow events, etc. In order to determine the extent of the mentioned changes, The Indicators of Hydrologic Alteration (IHA) software was used in this paper. The results showed that after the construction of Angiriai dam, such changes occurred in IHA Parameters group as: the water conditions of April month decreased by 31 %; 1-day, 3-days, 7-days and 30-days maximum flow decreased; the date of minimum flow occurred 21 days later; duration of high and low pulses and the frequency of low pulses decreased, but the frequency of high pulses increased, etc. The analysis of the Environmental Flow Components showed, that the essential differences were recorded in groups of the small and large floods, when, after the establishment of the Šušvė Reservoir, the large floods no longer took place and the probability of frequency of the small floods didn’t exceed 1 time per year.


2021 ◽  
Vol 108 ◽  
pp. 103224
Author(s):  
Tárcio Rocha Lopes ◽  
Cornélio Alberto Zolin ◽  
Rafael Mingoti ◽  
Laurimar Gonçalves Vendrusculo ◽  
Frederico Terra de Almeida ◽  
...  

2019 ◽  
Vol 70 (4) ◽  
pp. 541 ◽  
Author(s):  
Martha J. Zapata ◽  
S. Mažeika P. Sullivan

Variability in the density and distribution of adult aquatic insects is an important factor mediating aquatic-to-terrestrial nutritional subsidies in freshwater ecosystems, yet less is understood about insect-facilitated subsidy dynamics in estuaries. We surveyed emergent (i.e. adult) aquatic insects and nearshore orb-weaving spiders of the families Tetragnathidae and Araneidae in a subtropical estuary of Florida (USA). Emergent insect community composition varied seasonally and spatially; densities were lower at high- than low-salinity sites. At high-salinity sites, emergent insects exhibited lower dispersal ability and a higher prevalence of univoltinism than low- and mid-salinity assemblages. Orb-weaving spider density most strongly tracked emergent insect density rates at low- and mid-salinity sites. Tetragnatha body condition was 96% higher at high-salinity sites than at low-salinity sites. Our findings contribute to our understanding of aquatic insect communities in estuarine ecosystems and indicate that aquatic insects may provide important nutritional subsidies to riparian consumers despite their depressed abundance and diversity compared with freshwater ecosystems.


Hydrobiologia ◽  
1981 ◽  
Vol 77 (1) ◽  
pp. 65-69 ◽  
Author(s):  
G. A. Bird ◽  
H. B. N. Hynes

1996 ◽  
Vol 36 (2) ◽  
pp. 265-276 ◽  
Author(s):  
ZSOLT KOVATS ◽  
JAN CIBOROWSKI ◽  
LYNDA CORKUM

2014 ◽  
Vol 8 (11) ◽  
pp. e3298 ◽  
Author(s):  
Kevin Carolan ◽  
Andres Garchitorena ◽  
Gabriel E. García-Peña ◽  
Aaron Morris ◽  
Jordi Landier ◽  
...  

1988 ◽  
Vol 10 (2) ◽  
pp. 99-104 ◽  
Author(s):  
Thomas S. Jones ◽  
Vincent H. Resh

2018 ◽  
Author(s):  
Jan De Niel ◽  
Patrick Willems

Abstract. Climate change and land cover changes are influencing the hydrological regime of our rivers. The intensification of the hydrological cycle caused by climate change is projected to cause more flooding in winters and an increased urbanization could amplify these effects by a quicker runoff on paved surfaces. The relative importance of both drivers, however, is still uncertain and interaction effects between both drivers are not yet well understood. In order to better understand the hydrological impact of climate variability and land cover changes, including their interaction effects, we fitted a statistical model to historical data over 3 decades for 29 catchments in Flanders, covering various catchment characteristics. It was found that the catchment characteristics explain up to 18 % of changes in river peak flows, climate variability 6 % and land cover changes 8 %. Interaction terms explain up to 32 %. An increase in urban area of +1 % might cause increases in river peak flows up to +5 %.


Author(s):  
T. Kubendran ◽  
M. Ramesh

<div><p><em>The Western Ghats, running parallel to the west coast of India between 8° N and 21° N is a prominent feature of the peninsular India. In freshwater biodiversity hotspots like the Western Ghats, no information is available on activates and ecological role of adult aquatic insect in the riparian zone of streams.</em><strong><em> </em></strong><em>Most adult aquatic insects that emerge from streams live briefly in the nearby riparian zone. Adult activities, such as mating dispersal and feeding influence their distribution in the terrestrial habitat. An observation at Kurangani streams, Western Ghats, India has shown that both numbers and biomass of adult aquatic insects are greatest in the near stream vegetation; however, adult insects can be relatively common 1 to 10 feet from the stream. Why because, adult aquatic insects are abundant and they are primary food resource for many riparian insectivores. The role of adult aquatic insects in the riparian zone must be better understood for riparian and aquatic food chain to be complete. </em></p></div>


Sign in / Sign up

Export Citation Format

Share Document