peak flows
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 24)

H-INDEX

21
(FIVE YEARS 2)

Author(s):  
Colin L. Nicol ◽  
Jeffrey C. Jorgensen ◽  
Caleb B. Fogel ◽  
Britta Timpane-Padgham ◽  
Timothy J. Beechie

In the Pacific Northwest, USA, climate change is expected to result in a shift in average hydrologic conditions and increase variability. The relative vulnerabilities to peak flow changes among salmonid species within the same basin have not been widely evaluated. We assessed the impacts of predicted increases in peak flows on four salmonid populations in the Chehalis River basin. Coupling observations of peak flows, emissions projections, and multi-stage Beverton–Holt matrix-type life cycle models, we ran 100-year simulations of spawner abundance under baseline, mid-century, and late-century climate change scenarios. Coho (Oncorhynchus kisutch) and spring Chinook salmon (Oncorhynchus tshawytscha) shared the highest projected increase in interannual variability (SD = ±15%). Spring Chinook salmon had the greatest reduction in median spawner abundance (–13% to –15%), followed by coho and fall Chinook salmon (–7% to –9%), then steelhead (Oncorhynchus mykiss) (–4%). Our results show that interspecies and life history variability within a single basin is important to consider. Species with diverse age structures are partially buffered from population variability, which may increase population resilience to climate change.





Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3039
Author(s):  
Nathaniel Revell ◽  
Craig Lashford ◽  
Matthew Blackett ◽  
Matteo Rubinato

Woodland planting is gaining momentum as a potential method of natural flood management (NFM), due to its ability to break up soil and increase infiltration and water storage. In this study, a 2.2 km2 area in Warwickshire, England, planted with woodland every year from 2006 to 2012, was sampled using a Mini Disk infiltrometer (MDI). Infiltration measurements were taken from 10 and 200 cm away from the trees, from November 2019 to August 2021. Two individual hydrological models were built using the US Hydraulic Engineering Center Hydrological Modelling System (HEC-HMS), to model the effects of infiltration change on peak flows from the site throughout the summer and winter. The models were calibrated and validated using empirical data; the Nash and Sutcliffe Efficiency (NSE) was used as an indicator of accuracy. Results from this study show that woodland planting reduced peak flow intensity compared to impermeable land cover by an average of 6%, 2%, and 1% for 6-h, 24-h, and 96-h winter storms, respectively, and 48%, 18%, and 3% for 6-h, 24-h, and 96-h summer storms, respectively. However, grassland simulations show the greatest reduction in peak flows, being 32%, 21%, and 10%, lower than woodland for 6-, 24-, and 96-h winter storms, respectively, and 6%, 3%, and 0.5% lower than woodland for 6-, 24-, and 96-h summer storms, respectively.



Sinusitis ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 123-131
Author(s):  
Sy Duong-Quy ◽  
Thuy Nguyen-Thi-Dieu ◽  
Khai Tran-Quang ◽  
Tram Tang-Thi-Thao ◽  
Toi Nguyen-Van ◽  
...  

(1) Background: Exhaled nitric oxide (NO) has been considered as a biomarker of airway inflammation. The measurement of fractional exhaled NO (FENO) is a valuable test for assessing local inflammation in subjects with allergic rhinitis (AR). (2) Objective: To evaluate (a) the correlation between nasal FENO with anthropometric characteristics, symptoms of AR and nasal peak flows in children without and with AR; and (b) the cut-off of nasal FENO for diagnosis of AR in symptomatic children. (3) Methods: The study was a descriptive and cross-sectional study in subjects with and without AR < 18 years old. All clinical and functional characteristics of the study subjects were recorded for analysis. They were divided into healthy subjects for the control group and subjects with AR who met all inclusion criteria. (4) Results: 100 subjects (14 ± 3 years) were included, including 32 control subjects and 68 patients with AR. Nasal FENO in AR patients was significantly higher than in control subjects: 985 ± 232 ppb vs. 229 ± 65 ppb (p < 0.001). In control subjects, nasal FENO was not correlated with anthropometric characteristics and nasal inspiratory or expiratory peak flows (IPF or EPF) (p > 0.05). There was a correlation between nasal FENO and AR symptoms in AR patients and nasal IPF and EPF (p = 0.001 and 0.0001, respectively). The cut-off of nasal FENO for positive AR diagnosis with the highest specificity and sensitivity was ≥794 ppb (96.7% and 92.6%, respectively). (5) Conclusion: The use of nasal FENO as a biomarker of AR provides a useful tool and additional armamentarium in the management of allergic rhinitis.



2021 ◽  
Author(s):  
Felipe Quintero ◽  
Gabriele Villarini ◽  
Andreas F. Prein ◽  
Witold F. Krajewski ◽  
Wei Zhang

Abstract Our study focuses on the hydrologic implications of resolving and modeling atmospheric processes at different spatial scales. Here we use heavy precipitation events from an atmospheric model that was run at different horizontal grid spacings (i.e., 250 m, 500 m, 1 km, 2 km 4 km, and 12 km) and able to resolve different processes. Within an idealized simulation framework, these rainfall events are used as input to an operational distributed hydrologic model to evaluate the sensitivity of the hydrologic response to different forcing grid spacings. We consider the finest scale (i.e., 250 m) as reference, and compute event peak flows and volumes across a wide range of basin sizes. We find that the use of increasingly-coarser inputs leads to changes in the distribution of event peak flows and volumes, with the strongest sensitivity at the smallest catchment sizes. Overall, we find that 4-km rainfall simulations represent a good compromise between computational costs and hydrologic performance, providing basic information for future endeavors geared towards regional downscaling.



2021 ◽  
Author(s):  
SEAD AHMED SWALIH ◽  
Ercan Kahya

Abstract Gridded precipitation products are becoming good alternative data sources for regions with limited weather gauging stations. In this study, four climate gridded precipitation products were utilized, namely: Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim/land, the Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), and Multi-Source Weighted-Ensemble Precipitation (MSWEP). The key novelty of this study is to fill the gap in one of important areas of the transcontinental region of Eurasia, namely Rize province in the Black Sea region being selected as a study area since it has complex topography and climatology in addition to a limited number of gauging stations. A set of precipitation products were assessed for performance with the observed precipitation data before using a hydrological model (SWAT) to evaluate the basin response for the climate products. Three methods were considered in this study: (i) spatial comparison; (ii) hydrological, and (iii) statistical evaluation. Along with precipitation forcing, the SWAT model simulations were analysed in conjunction with streamflow observations. In an overall evaluation, the percentage bias of ERA-Interim/land, CFSR, APHRODITE, and MSWEP mean monthly precipitation is 19.9%, 33.4%, 41.4% and 85.0% respectively. For the flow simulations, the CFSR and MSWEP have resulted in exaggerated peak flows in the high flow season due to overestimated precipitation forcing (Nash Sutcliffe efficiency [NS] equal to 0.22 and -0.73, respectively). On the contrary, the APHRODITE underestimated the peak flows due to lower precipitation estimates (NS = 0.38). The ERA-Interim land showed good agreement with the observed flows (NS = 0.53). From these readings we stated that the ERA-Interim land exhibited improved performance with the observed precipitation whereas the CFSR showed the worst performance. The study suggests that gridded precipitation products could supplement observed precipitation data for observational data scarcity in mountainous regions.



2021 ◽  
Author(s):  
Jana Cram ◽  
Mary Levandowski ◽  
Kaci Fitzgibbon ◽  
Andrew Ray

This report summarizes discharge and water quality monitoring data for the Snake River and Jackson Lake reservoir levels in Grand Teton National Park and John D. Rockefeller, Jr. Memorial Parkway for calendar year 2016. Annual and long-term discharge summaries and an evaluation of chemical conditions relative to state and federal water quality standards are presented. These results are considered provisional, and may be subject to change. River Discharge: Hydrographs for the Snake River at Flagg Ranch, WY, and Moose, WY, exhibit a general pattern of high early summer flows and lower baseflows occurring in late summer and fall. During much of 2016, flows at the Flagg Ranch monitoring location were similar to the 25th percentile of daily flows at that site. Peak flows at Flagg Ranch were similar to average peak flow from 1983 to 2015 but occurred eleven days earlier in the year compared to the long-term average. Peak flows and daily flows at the Moose monitoring station were below the long-term average. Peak flows occurred four days later than the long-term average. During summer months, the unnatural hydro-graph at the Moose monitoring location exhibited signs of flow regulation associated with the management of Jackson Lake. Water Quality Monitoring in the Snake River: Water quality in the Snake River exhibited seasonal variability over the sampling period. Specifically, total iron peaked during high flows. In contrast, chloride, sulfate, sodium, magnesium, and calcium levels were at their annual minimum during high flows. Jackson Lake Reservoir: Reservoir storage dynamics in Jackson Lake exhibit a pattern of spring filling associated with early snowmelt runoff reaching maximum storage in mid-summer (on or near July 1). During 2016, filling water levels and reservoir storage began to increase in Jackson Lake nearly two weeks earlier than the long-term average and coincident with increases in runoff-driven flows in the Snake River. Although peak storage in Jackson Lake was larger and occurred earlier than the long-term average, minimum storage levels were similar to the long-term average.



Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 95
Author(s):  
Bruno Gianmarco Carrà ◽  
Giuseppe Bombino ◽  
Pietro Denisi ◽  
Pedro Antonio Plaza-Àlvarez ◽  
Manuel Esteban Lucas-Borja ◽  
...  

Prescribed fire is commonly used to reduce the wildfire risk in Mediterranean forests, but the soil’s hydrological response after fire is contrasting in literature experiences. The mulch treatment can limit the increases in runoff and erosion in the short term after a fire. The use of fern is preferable to straw, due its large availability in forests. However, no experiences of post-fire treatment with fern mulch have been found in the literature and therefore the mulching effectiveness has not been evaluated. This study has measured water infiltration rate (IR) and water repellency (SWR) using a rainfall simulator in three Mediterranean forest stands (pine, oak and chestnut) of Calabria (Southern Italy) after a prescribed fire and mulching treatment with fern in comparison to unburned soil. Prescribed fire reduced water infiltration in all forests in the short term compared to the unburned conditions, and increased SWR in pine and oak forests. These reductions in IR in the time window of disturbance after fire increased the runoff generation capacity in all soils, but had a lower effect on peak flows. However, soil mulching with fern limited the runoff rates and peak flows compared to the burned soils, but this treatment was less effective in pine forest. One year after fire, IR increased in burned soils (treated or not) over time, and SWR disappeared. The effects of mulching have disappeared after some months from fire. The study confirms the usefulness of mulching in broadleaves forest in the short term, in order to control the hydrological effects of prescribed fire in Mediterranean forests. Both post-fire management techniques should be instead adopted with caution in conifer forests.



Author(s):  
Philip Mzava ◽  
Patrick Valimba ◽  
Joel Nobert

Abstract Over the past half-century, the risk of urban flooding in Dar es Salaam has increased due to changes in land cover coupled with climatic changes. This paper aimed to quantify the impacts of climate and land-cover changes on the magnitudes and frequencies of flood runoffs in urban Dar es Salaam, Tanzania. A calibrated and validated SWAT rainfall-runoff model was used to generate flood hydrographs for the period 1969–2050 using historical rainfall data and projected rainfall based on the CORDEX-Africa regional climate model. Results showed that climate change has a greater impact on change in peak flows than land-cover change when the two are treated separately in theory. It was observed that, in the past, the probability of occurrence of urban flooding in the study area was likely to be increased up to 1.5-fold by climate change relative to land-cover change. In the future, this figure is estimated to decrease to 1.1-fold. The coupled effects of climate and land-cover changes cause a much bigger impact on change in peak flows than any separate scenario; this scenario represents the actual scenario on the ground. From the combined effects of climate and land-cover changes, the magnitudes of mean peak flows were determined to increase between 34.4 and 58.6% in the future relative to the past. However, the change in peak flows from combined effects of climate and land-cover changes will decrease by 36.3% in the future relative to the past; owing to the lesser variations in climate and land-cover changes in the future compared with those of the past.



2021 ◽  
Vol 596 ◽  
pp. 126054
Author(s):  
Zachary P. McEachran ◽  
Diana L. Karwan ◽  
Stephen D. Sebestyen ◽  
Robert A. Slesak ◽  
Gene-Hua Crystal Ng


Sign in / Sign up

Export Citation Format

Share Document