High vapour pressure deficit exacerbates xylem cavitation and photoinhibition in shade-grown Piper auritum H.B. & K. during prolonged sunflecks

Oecologia ◽  
1997 ◽  
Vol 110 (3) ◽  
pp. 312-319 ◽  
Author(s):  
H. R. Schultz ◽  
Mark A. Matthews
2000 ◽  
Vol 84 (3-4) ◽  
pp. 285-296 ◽  
Author(s):  
Cherubino Leonardi ◽  
Soraya Guichard ◽  
Nadia Bertin

2016 ◽  
Vol 67 (10) ◽  
pp. 1019 ◽  
Author(s):  
V. O. Sadras ◽  
P. T. Hayman ◽  
D. Rodriguez ◽  
M. Monjardino ◽  
M. Bielich ◽  
...  

This paper reviews the interactions between water and nitrogen from physiological, agronomic, economic, breeding and modelling perspectives. Our primary focus is wheat; we consider forage crops, sorghum and legumes where relevant aspects of water–nitrogen interactions have been advanced. From a physiological perspective, we ask: How does nitrogen deficit influence the water economy of the crop? How does water deficit influence the nitrogen economy of the crop? How do combined water and nitrogen deficit affect crop growth and yield? We emphasise synergies, and the nitrogen-driven trade-off between the efficiency in the use of water and nitrogen. The concept of nitrogen–water co-limitation is discussed briefly. From agronomic and economic perspectives, the need to match supply of nitrogen and water is recognised, but this remains a challenge in dryland systems with uncertain rainfall. Under-fertilisation commonly causes gaps between actual and water-limited potential yield. We discuss risk aversion and the role of seasonal rainfall forecasts to manage risk. From a breeding perspective, we ask how selection for yield has changed crop traits relating to water and nitrogen. Changes in nitrogen traits are more common and profound than changes in water-related traits. Comparison of shifts in the wheat phenotype in Australia, UK, Argentina and Italy suggests that improving yield per unit nitrogen uptake is straightforward; it requires selection for yield and allowing grain protein concentration to drift unchecked. A more interesting proposition is to increase nitrogen uptake to match yield gains and conserve protein in grain. Increased stomatal conductance is a conspicuous response to selection for yield which partially conflicts with the perception that reduced conductance at high vapour pressure deficit is required to increase water- use efficiency; but high stomatal conductance at high vapour pressure deficit may be adaptive for thermal stress. From a modelling perspective, water and nitrogen are linked in multiple ways. In crops where water limits growth, reduced biomass reduces nitrogen demand. Reciprocally, nitrogen limitation during crop expansion reduces leaf area index and increases the soil evaporation : transpiration ratio. Water–nitrogen interactions are also captured in the water-driven uptake of nitrogen by mass flow and diffusion and in the water-driven processes of nitrogen in soil (e.g. mineralisation). The paper concludes with suggestions for future research on water-nitrogen interactions.


2017 ◽  
Vol 203 (4) ◽  
pp. 295-300 ◽  
Author(s):  
A. Shekoofa ◽  
T. R. Sinclair ◽  
C. Aninbon ◽  
C. C. Holbrook ◽  
T. G. Isleib ◽  
...  

1998 ◽  
Vol 25 (3) ◽  
pp. 287 ◽  
Author(s):  
Saman P. Seneweera ◽  
Oula Ghannoum ◽  
Jann Conroy

The hypothesis that shoot growth responses of C4 grasses to elevated CO2 are dependent on shoot water relations was tested using a C4 grass, Panicum coloratum (NAD-ME subtype). Plants were grown for 35 days at CO2 concentrations of 350 or 1000 µL CO2 L-1. Shoot water relations were altered by growing plants in soil which was brought daily to 65, 80 or 100% field capacity (FC) and by maintaining the vapour pressure deficit (VPD) at 0.9 or 2.1 kPa. At 350 µL CO2 L-1, high VPD and lower soil water content depressed shoot dry mass, which declined in parallel at each VPD with decreasing soil water content. The growth depression at high VPD was associated with increased shoot transpiration, whereas at low soil water, leaf water potential was reduced. Elevated CO2 ameliorated the impact of both stresses by decreasing transpiration rates and raising leaf water potential. Consequently, high CO2 approximately doubled shoot mass and leaf length at a VPD of 2.1 kPa and soil water contents of 65 and 80% FC but had no effect on unstressed plants. Water use efficiency was enhanced by elevated CO2 under conditions of stress but this was primarily due to increases in shoot mass. High CO2 had a greater effect on leaf growth parameters than on stem mass. Elevated CO2 increased specific leaf area and leaf area ratio, the latter at high VPD only. We conclude that high CO2 increases shoot growth of C4 grasses by ameliorating the effects of stress induced by either high VPD or low soil moisture. Since these factors limit growth of field-grown C4 grasses, it is likely that their biomass will be enhanced by rising atmospheric CO2 concentrations.


Sign in / Sign up

Export Citation Format

Share Document