Integrated L-phenylalanine separation in an E. coli fed-batch process: from laboratory to pilot scale

2002 ◽  
Vol 25 (2) ◽  
pp. 85-96 ◽  
Author(s):  
Maass D. ◽  
Gerigk M. ◽  
Kreutzer A. ◽  
Weuster-Botz D. ◽  
Wubbolts M. ◽  
...  
Keyword(s):  
2010 ◽  
pp. 723-725
Author(s):  
Véronique Chotteau ◽  
Yun Jiang ◽  
Jeannette Westin ◽  
Kerstin Dahlenborg ◽  
Anna Sjöblom-Hallén ◽  
...  

2018 ◽  
Vol 266 ◽  
pp. 133-143 ◽  
Author(s):  
Matthias Müller ◽  
Wolfram Meusel ◽  
Ute Husemann ◽  
Gerhard Greller ◽  
Matthias Kraume
Keyword(s):  

Author(s):  
Wouter Van Winden ◽  
Robert Mans ◽  
Stefaan Breestraat ◽  
Rob Verlinden ◽  
Alvaro Mielgo-Gómez ◽  
...  

A novel fermentation process was developed in which renewable electricity is indirectly used as a fermentation substrate, synergistically decreasing both the consumption of sugar as a first generation carbon source and emission of the greenhouse gas CO2. To achieve this, a glucose-based process is co-fed with formic acid, which can be generated by capturing CO2 from fermentation offgas followed by electrochemical reduction with renewable electricity. This ‘closed carbon loop’ concept is demonstrated by a case study in which co-feeding formic acid is shown to significantly increase the yield of biomass on glucose of the industrially relevant yeast species Yarrowia lipolytica. First, the optimal feed ratio of formic acid to glucose is established using chemostat cultivations. Subsequently, guided by a dynamic fermentation process model, a fed-batch protocol is developed and demonstrated on laboratory scale. Finally, the developed fed-batch process is proven to be scalable to pilot scale. An extension of this proven concept to also recycle the O2 that is co-generated with the formic acid to the fermentation process for intensification purposes, and a potential further application of the concept to anaerobic fermentations are discussed.


2020 ◽  
Vol 16 (6) ◽  
pp. 928-933
Author(s):  
Jujjavarapu S. Eswari

Objective: Biosurfactants are the surface active agents which are used for the reduction of surface and interfacial tensions of liquids. Rhamnolipids are the surfactants produced by Pseudomonas aeruginosa. It requires minimum nutrition for its growth as it can also grow in distilled water. The rhamnolipids produced by Pseudomonas aeruginosa are extra-cellular glycolipids consisting of L-rhamnose and 3-hydroxyalkanoic acid. Methods: The fed-batch method for the rhamnolipid production is considered in this study to know the influence of the carbon, nitrogen, phosphorous substrates as growth-limiting nutrients. Pulse feeding is employed for limiting nutrient addition at particular time interval to obtain maximum rhamnolipid formation from Pseudomonas aeruginosa compared with the batch process. Results: Out of 3 fed batch strategies constant glucose fed batch strategy shows best and gave maximum rhamnolipid concentration of 0.134 g/l.


2019 ◽  
Vol 15 (2) ◽  
pp. 1900088 ◽  
Author(s):  
Tobias Habicher ◽  
Edward K. A. Rauls ◽  
Franziska Egidi ◽  
Timm Keil ◽  
Tobias Klein ◽  
...  

2014 ◽  
Vol 77 (9) ◽  
pp. 1487-1494 ◽  
Author(s):  
ANNEMARIE L. BUCHHOLZ ◽  
GORDON R. DAVIDSON ◽  
BRADLEY P. MARKS ◽  
EWEN C. D. TODD ◽  
ELLIOT T. RYSER

Cross-contamination of fresh-cut leafy greens with residual Escherichia coli O157:H7–contaminated product during commercial processing was likely a contributing factor in several recent multistate outbreaks. Consequently, radicchio was used as a visual marker to track the spread of the contaminated product to iceberg lettuce in a pilot-scale processing line that included a commercial shredder, step conveyor, flume tank, shaker table, and centrifugal dryer. Uninoculated iceberg lettuce (45 kg) was processed, followed by 9.1 kg of radicchio (dip inoculated to contain a four-strain, green fluorescent protein–labeled nontoxigenic E. coli O157:H7 cocktail at 106 CFU/g) and 907 kg (2,000 lb) of uninoculated iceberg lettuce. After collecting the lettuce and radicchio in about 40 bags (~22.7 kg per bag) along with water and equipment surface samples, all visible shreds of radicchio were retrieved from the bags of shredded product, the equipment, and the floor. E. coli O157:H7 populations were quantified in the lettuce, water, and equipment samples by direct plating with or without prior membrane filtration on Trypticase soy agar containing 0.6% yeast extract and 100 ppm of ampicillin. Based on triplicate experiments, the weight of radicchio in the shredded lettuce averaged 614.9 g (93.6%), 6.9 g (1.3%), 5.0 g (0.8%), and 2.8 g (0.5%) for bags 1 to 10, 11 to 20, 21 to 30, and 31 to 40, respectively, with mean E. coli O157:H7 populations of 1.7, 1.2, 1.1, and 1.1 log CFU/g in radicchio-free lettuce. After processing, more radicchio remained on the conveyor (9.8 g; P < 0.05), compared with the shredder (8.3 g), flume tank (3.5 g), and shaker table (0.1 g), with similar E. coli O157:H7 populations (P > 0.05) recovered from all equipment surfaces after processing. These findings clearly demonstrate both the potential for the continuous spread of contaminated lettuce to multiple batches of product during processing and the need for improved equipment designs that minimize the buildup of residual product during processing.


Sign in / Sign up

Export Citation Format

Share Document