Synthesis of propyl benzoate by solvent-free immobilized lipase-catalyzed transesterification: Optimization and kinetic modeling

Author(s):  
Priyanka V. Jawale ◽  
Bhalchandra M. Bhanage
Fuel ◽  
2010 ◽  
Vol 89 (12) ◽  
pp. 3960-3965 ◽  
Author(s):  
Liping Zhang ◽  
Shuzhen Sun ◽  
Zhong Xin ◽  
Boyang Sheng ◽  
Qun Liu

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1357
Author(s):  
Ronaldo Rodrigues de Sousa ◽  
Ayla Sant’Ana da Silva ◽  
Roberto Fernandez-Lafuente ◽  
Viridiana Santana Ferreira-Leitão

The adoption of biocatalysis in solvent-free systems is an alternative to establish a greener esters production. An interesting correlation between the acid:alcohol molar ratio and biocatalyst (immobilized lipase) loading in the optimization of ester syntheses in solvent-free systems had been observed and explored. A simple mathematical tool named Substrate-Enzyme Relation (SER) has been developed, indicating a range of reaction conditions that resulted in high conversions. Here, SER utility has been validated using data from the literature and experimental assays, totalizing 39 different examples of solvent-free enzymatic esterifications. We found a good correlation between the SER trends and reaction conditions that promoted high conversions on the syntheses of short, mid, or long-chain esters. Moreover, the predictions obtained with SER are coherent with thermodynamic and kinetics aspects of enzymatic esterification in solvent-free systems. SER is an easy-to-handle tool to predict the reaction behavior, allowing obtaining optimum reaction conditions with a reduced number of experiments, including the adoption of reduced biocatalysts loadings.


OCL ◽  
2018 ◽  
Vol 25 (3) ◽  
pp. A302 ◽  
Author(s):  
Vanessa Sousa ◽  
Vitor Campos ◽  
Patrícia Nunes ◽  
Paula Pires-Cabral

Structured lipids (SLs) are novel triacylglycerols obtained by changing the native fatty acid (FA) profiles or by the incorporation of a new desired FA in the acylglycerol backbone. These modified fats present important medical and functional properties for food applications. This work aimed to synthetize a MLM-type SL, which consists of triacylglycerols containing a medium-chain FA (M) at sn-1,3 positions and a long-chain FA (L) at sn-2 position, by acidolysis of pumpkin seed oil with capric acid, catalyzed by a commercial lipase preparation from Thermomyces lanuginosa (Lipozyme TL IM). Reactions were performed at 45 °C, in solvent-free media, at 1:2 molar ratio (pumpkin seed oil:capric acid) and a fixed amount of immobilized lipase of 5%, 10%, 15% or 20%. Incorporations of C10:0 increased with time up to 31 h (29.9 ± 0.7 mol-%) when 5% lipase load was used. Significant differences were only observed between the results obtained with 5 and 20% of biocatalyst load. The subsequent experiment was carried out with 5% lipase load, at 45 °C, 1:2 molar ratio and in the presence of n-hexane. The results showed slightly higher incorporation yields in the presence of solvent, namely at 48 h-reaction (34.7 ± 1.0 mol-%). However, since the structured lipids are to be used in food products, together with environmental and economic concerns, solvent-free systems are preferred. In this study, the synthesis of a MLM-type SL from pumpkin seed oil for food uses was well succeeded.


2015 ◽  
Vol 17 (3) ◽  
pp. 1756-1766 ◽  
Author(s):  
Alessandro Pellis ◽  
Livia Corici ◽  
Loris Sinigoi ◽  
Nicola D'Amelio ◽  
Diana Fattor ◽  
...  

Robust covalently immobilized lipase used in thin-film processes makes enzymes recyclable and improves mass/heat transfer.


Sign in / Sign up

Export Citation Format

Share Document