scholarly journals Mesh moving techniques in fluid-structure interaction: robustness, accumulated distortion and computational efficiency

Author(s):  
Alexander Shamanskiy ◽  
Bernd Simeon

AbstractAn important ingredient of any moving-mesh method for fluid-structure interaction (FSI) problems is the mesh moving technique (MMT) used to adapt the computational mesh in the moving fluid domain. An ideal MMT is computationally inexpensive, can handle large mesh motions without inverting mesh elements and can sustain an FSI simulation for extensive periods of time without irreversibly distorting the mesh. Here we compare several commonly used MMTs which are based on the solution of elliptic partial differential equations, including harmonic extension, bi-harmonic extension and techniques based on the equations of linear elasticity. Moreover, we propose a novel MMT which utilizes ideas from continuation methods to efficiently solve the equations of nonlinear elasticity and proves to be robust even when the mesh undergoes extreme motions. In addition to that, we study how each MMT behaves when combined with the mesh-Jacobian-based stiffening. Finally, we evaluate the performance of different MMTs on a popular two-dimensional FSI benchmark reproduced by using an isogeometric partitioned solver with strong coupling.

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Haiping Gao ◽  
Baoren Li ◽  
Xiaoyun Fu ◽  
Gang Yang

Soft elastohydrodynamic lubrication (EHL) problems widely exist in hydraulic reciprocating rod seals and pose great challenges because of high nonlinearity and strong coupling effects, especially when the EHL problems are of high dimensions. In this paper, a strongly coupled fluid structure interaction (FSI) model is proposed to solve the transient soft EHL problems in U-cup hydraulic reciprocating rod seals. The Navier–Stokes equations, rather than the Reynolds equation, are employed to govern the whole fluid field in the soft EHL problems, with the nonlinearity of the solid taken into consideration. The governing equations of the fluid and solid fields are combined into one equation system and solved monolithically. To determine the displacements of nodes of the fluid field, a new moving mesh method based on the combination of the Laplace equation and the leader–follower methods is put forward. At last, the proposed FSI model runs successfully with the moving mesh method, and the boundaries of the hydrodynamic lubrication zones and the hydrostatic zones are formed automatically and change dynamically during the coupling process. The results are as follows: The soft EHL problems show typical characteristics, like the constriction effects of the lubricating films, and the law of dynamic development of the lubricating films and the fluid pressures is revealed. The minimum stroke lengths needed to generate complete lubricating films vary with the rod speeds and movement directions, so the design of the rod seals should be paid close attention to, in particular the rod seals of short stroke lengths. Furthermore, along with the dynamic development processes of the fluid pressures during the instroke of U-cup seals, the lubricating film humps expand and locate between the fluid pressure abrupt points and the outlet zones. After the U-cup seals reach the steady-states, the fluid abrupt points disappear and no changes of the film humps are observed. Theoretically, the proposed method can be popularized to solve similar soft EHL problems.


Author(s):  
Q. Li ◽  
H. Z. Liu ◽  
Z. Zhuang ◽  
S. Yamaguchi ◽  
M. Toyoda

A partitioned coupling algorithm is presented in this paper to solve the dynamic large-displacement fluid-structure interaction (DFSI) problems. In this algorithm, the program based on arbitrary Lagrangian Eulerian (ALE) and fractional two-step method is developed to calculate computational fluid dynamics (CFD) and computational mesh dynamics (CMD). ABAQUS is used to calculate computational structure dynamics (CSD). Some user subroutines are implemented into ABAQUS and the data are exchanged among CSD, CFD and CMD. Numerical results including elephant foot bulging (EFB) of the liquid storage tank are obtained under dynamic waveform.


Author(s):  
Choengryul Choi ◽  
Chang Nyung Kim

We develop a fluid-structure interaction (FSI) method based on the ALE method and a dynamic mesh method with an ultimate aim which is to simulate the complicated dynamics of rigid particles in shear flow and to investigate the rheological behavior of the suspension. Because the motion of the fluid and particles in fluid-particle suspension problems is strongly linked, the governing equations are sequentially solved in each solver and the computation is iterated until the solutions converge in a two-way coupling fashion. The mesh system initially designed is deformed or re-meshed in accordance with the moving particles by a dynamic mesh method. Numerical simulation is entirely implemented by our FSI code in the framework of FLUENT. The present simulations have demonstrated the capability of the developed FSI method in simulating the dynamics of single and multiple particles with different arbitrary shapes in shear flows.


Sign in / Sign up

Export Citation Format

Share Document