Training neural networks via simplified hybrid algorithm mixing Nelder–Mead and particle swarm optimization methods

2014 ◽  
Vol 19 (3) ◽  
pp. 679-689 ◽  
Author(s):  
Shih-Hui Liao ◽  
Jer-Guang Hsieh ◽  
Jyh-Yeong Chang ◽  
Chin-Teng Lin
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1213
Author(s):  
Ahmed Aljanad ◽  
Nadia M. L. Tan ◽  
Vassilios G. Agelidis ◽  
Hussain Shareef

Hourly global solar irradiance (GSR) data are required for sizing, planning, and modeling of solar photovoltaic farms. However, operating and controlling such farms exposed to varying environmental conditions, such as fast passing clouds, necessitates GSR data to be available for very short time intervals. Classical backpropagation neural networks do not perform satisfactorily when predicting parameters within short intervals. This paper proposes a hybrid backpropagation neural networks based on particle swarm optimization. The particle swarm algorithm is used as an optimization algorithm within the backpropagation neural networks to optimize the number of hidden layers and neurons used and its learning rate. The proposed model can be used as a reliable model in predicting changes in the solar irradiance during short time interval in tropical regions such as Malaysia and other regions. Actual global solar irradiance data of 5-s and 1-min intervals, recorded by weather stations, are applied to train and test the proposed algorithm. Moreover, to ensure the adaptability and robustness of the proposed technique, two different cases are evaluated using 1-day and 3-days profiles, for two different time intervals of 1-min and 5-s each. A set of statistical error indices have been introduced to evaluate the performance of the proposed algorithm. From the results obtained, the 3-days profile’s performance evaluation of the BPNN-PSO are 1.7078 of RMSE, 0.7537 of MAE, 0.0292 of MSE, and 31.4348 of MAPE (%), at 5-s time interval, where the obtained results of 1-min interval are 0.6566 of RMSE, 0.2754 of MAE, 0.0043 of MSE, and 1.4732 of MAPE (%). The results revealed that proposed model outperformed the standalone backpropagation neural networks method in predicting global solar irradiance values for extremely short-time intervals. In addition to that, the proposed model exhibited high level of predictability compared to other existing models.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Weijie Xia ◽  
Xue Jin ◽  
Fawang Dou

It should be noted that the peak sidelobe level (PSLL) significantly influences the performance of the multibeam imaging sonar. Although a great amount of work has been done to suppress the PSLL of the array, one can verify that these methods do not provide optimal results when applied to the case of multiple patterns. In order to suppress the PSLL for multibeam imaging sonar array, a hybrid algorithm of binary particle swarm optimization (BPSO) and convex optimization is proposed in this paper. In this algorithm, the PSLL of multiple patterns is taken as the optimization objective. BPSO is considered as a global optimization algorithm to determine best common elements’ positions and convex optimization is considered as a local optimization algorithm to optimize elements’ weights, which guarantees the complete match of the two factors. At last, simulations are carried out to illustrate the effectiveness of the proposed algorithm in this paper. Results show that, for a sparse semicircular array with multiple patterns, the hybrid algorithm can obtain a lower PSLL compared with existing methods and it consumes less calculation time in comparison with other hybrid algorithms.


Sign in / Sign up

Export Citation Format

Share Document