Modified bat algorithm based on covariance adaptive evolution for global optimization problems

2017 ◽  
Vol 22 (16) ◽  
pp. 5215-5230 ◽  
Author(s):  
Xian Shan ◽  
Huijin Cheng
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wali Khan Mashwani ◽  
Ihsan Mehmood ◽  
Maharani Abu Bakar ◽  
Ismail Koçcak

In the last two decades, the field of global optimization has become very active, and, in this regard, many deterministic and stochastic algorithms were developed for solving various optimization problems. Among them, swarm intelligence (SI) is a stochastic algorithm that is more flexible and robust and has had the ability to find an optimum solution for high-dimensional optimization and search problems. SI-based algorithms are mainly inspired by the social behavior of fish schooling or bird flocking. Among the SI-based algorithms, Bat algorithm (BA) is one of the recently developed evolutionary algorithms. It employs an echolocation behavior of microbats by varying pulse rates of emission and loudness to perform their search process. In this paper, a modified Bat algorithm (MBA) is developed. The main focus of the MBA is to further enhance the exploration and exploitation search abilities of the original Bat algorithm. The performance of the modified Bat algorithm (MBA) is examined over the benchmark functions designed for evolutionary algorithms competition in the special session of 2005 IEEE Congress on Evolutionary Computation. The used benchmark functions include the unimodal, multimodal, and hybrid benchmark functions with high dimensionality. Furthermore, the impact analysis with respect to different values of temperatures is conducted by executing the proposed algorithm twenty-five times independently by using each benchmark function with different random seeds.


Author(s):  
Noureddine Boukhari ◽  
Fatima Debbat ◽  
Nicolas Monmarché ◽  
Mohamed Slimane

The main purpose of this article is to demonstrate how evolution strategy optimizers can be improved by incorporating an efficient hybridization scheme with restart strategy in order to jump out of local solution regions. The authors propose a hybrid (μ, λ)ES-NM algorithm based on the Nelder-Mead (NM) simplex search method and evolution strategy algorithm (ES) for unconstrained optimization. At first, a modified NM, called Adaptive Nelder-Mead (ANM) is used that exhibits better properties than standard NM and self-adaptive evolution strategy algorithm is applied for better performance, in addition to a new contraction criterion is proposed in this work. (μ, λ)ES-NM is balancing between the global exploration of the evolution strategy algorithm and the deep exploitation of the Nelder-Mead method. The experiment results show the efficiency of the new algorithm and its ability to solve optimization problems in the performance of accuracy, robustness, and adaptability.


2018 ◽  
Vol 51 (2) ◽  
pp. 265-285 ◽  
Author(s):  
Abdulbaset Saad ◽  
Zuomin Dong ◽  
Brad Buckham ◽  
Curran Crawford ◽  
Adel Younis ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 157-184
Author(s):  
Wasqas Haider Bangyal ◽  
Jamil Ahmad ◽  
Hafiz Tayyab Rauf

Bat algorithm (BA) is a population-based stochastic search technique that has been widely used to solve the diverse kind of optimization problems. Population initialization is the current ongoing research problem in evolutionary computing algorithms. Appropriate population initialization assists the algorithm to investigate the swarm search space effectively. BA faces premature convergence problem to find actual global optimization value. Low discrepancy sequences are slightly lesser random number than pseudo-random; however, they are more powerful for computational approaches. In this work, new population initialization approach Halton (BA-HA), Sobol (BA-SO), and Torus (BA-TO) are proposed, which helps bats to avoid from the premature convergence. The proposed approaches are examined on standard benchmark functions, and simulation results are compared with standard BA initialized with uniform distribution. The results depict that substantial enhancement can be attained in the performance of standard BA while varying the random numbers sequences to low discrepancy sequences.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Leilei Cao ◽  
Lihong Xu ◽  
Erik D. Goodman

A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 135 ◽  
Author(s):  
Yechuang Wang ◽  
Penghong Wang ◽  
Jiangjiang Zhang ◽  
Zhihua Cui ◽  
Xingjuan Cai ◽  
...  

A bat algorithm (BA) is a heuristic algorithm that operates by imitating the echolocation behavior of bats to perform global optimization. The BA is widely used in various optimization problems because of its excellent performance. In the bat algorithm, the global search capability is determined by the parameter loudness and frequency. However, experiments show that each operator in the algorithm can only improve the performance of the algorithm at a certain time. In this paper, a novel bat algorithm with multiple strategies coupling (mixBA) is proposed to solve this problem. To prove the effectiveness of the algorithm, we compared it with CEC2013 benchmarks test suits. Furthermore, the Wilcoxon and Friedman tests were conducted to distinguish the differences between it and other algorithms. The results prove that the proposed algorithm is significantly superior to others on the majority of benchmark functions.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Xian Shan ◽  
Kang Liu ◽  
Pei-Liang Sun

Bat Algorithm (BA) is a swarm intelligence algorithm which has been intensively applied to solve academic and real life optimization problems. However, due to the lack of good balance between exploration and exploitation, BA sometimes fails at finding global optimum and is easily trapped into local optima. In order to overcome the premature problem and improve the local searching ability of Bat Algorithm for optimization problems, we propose an improved BA called OBMLBA. In the proposed algorithm, a modified search equation with more useful information from the search experiences is introduced to generate a candidate solution, and Lévy Flight random walk is incorporated with BA in order to avoid being trapped into local optima. Furthermore, the concept of opposition based learning (OBL) is embedded to BA to enhance the diversity and convergence capability. To evaluate the performance of the proposed approach, 16 benchmark functions have been employed. The results obtained by the experiments demonstrate the effectiveness and efficiency of OBMLBA for global optimization problems. Comparisons with some other BA variants and other state-of-the-art algorithms have shown the proposed approach significantly improves the performance of BA. Performances of the proposed algorithm on large scale optimization problems and real world optimization problems are not discussed in the paper, and it will be studied in the future work.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shahla U. Umar ◽  
Tarik A. Rashid

Purpose The purpose of this study is to provide the reader with a full study of the bat algorithm, including its limitations, the fields that the algorithm has been applied, versatile optimization problems in different domains and all the studies that assess its performance against other meta-heuristic algorithms. Design/methodology/approach Bat algorithm is given in-depth in terms of backgrounds, characteristics, limitations, it has also displayed the algorithms that hybridized with BA (K-Medoids, back-propagation neural network, harmony search algorithm, differential evaluation strategies, enhanced particle swarm optimization and Cuckoo search algorithm) and their theoretical results, as well as to the modifications that have been performed of the algorithm (modified bat algorithm, enhanced bat algorithm, bat algorithm with mutation (BAM), uninhabited combat aerial vehicle-BAM and non-linear optimization). It also provides a summary review that focuses on improved and new bat algorithm (directed artificial bat algorithm, complex-valued bat algorithm, principal component analyzes-BA, multiple strategies coupling bat algorithm and directional bat algorithm). Findings Shed light on the advantages and disadvantages of this algorithm through all the research studies that dealt with the algorithm in addition to the fields and applications it has addressed in the hope that it will help scientists understand and develop it. Originality/value As far as the research community knowledge, there is no comprehensive survey study conducted on this algorithm covering all its aspects.


Author(s):  
Huda I. Ahmed ◽  
Eman T. Hamed ◽  
Hamsa Th. Saeed Chilmeran

Metaheuristic algorithms are used to solve many optimization problems. Firefly algorithm, particle swarm improvement, harmonic search, and bat algorithm are used as search algorithms to find the optimal solution to the problem field. In this paper, we have investigated and analyzed a new scaled conjugate gradient algorithm and its implementation, based on the exact Wolfe line search conditions and the restart Powell criterion. The new spectral conjugate gradient algorithm is a modification of the Birgin and Martínez method, a manner to overcome the lack of positive definiteness of the matrix defining the search direction. The preliminary computational results for a set of 30 unconstrained optimization test problems show that this new spectral conjugate gradient outperforms a standard conjugate gradient in this field and we have applied the newly proposed spectral conjugate gradient algorithm in bat algorithm to reach the lowest possible goal of bat algorithm. The newly proposed approach, namely, the directional bat algorithm (CG-BAT), has been then tested using several standard and nonstandard benchmarks from the CEC’2005 benchmark suite with five other algorithms and has been then tested using nonparametric statistical tests and the statistical test results show the superiority of the directional bat algorithm, and also we have adopted the performance profiles given by Dolan and More which show the superiority of the new algorithm (CG-BAT).


Sign in / Sign up

Export Citation Format

Share Document