A power system restoration method using voltage source converter–high-voltage direct current technology, aided by time-series neural network with firefly algorithm

2019 ◽  
Vol 24 (13) ◽  
pp. 9495-9506 ◽  
Author(s):  
Jan Bhasha Shaik ◽  
V. Ganesh
2016 ◽  
Vol 1 (3) ◽  
pp. 68 ◽  
Author(s):  
Oluwafemi Emmanuel Oni ◽  
Kamati I. Mbangula ◽  
Innocent E. Davidson

High Voltage Direct Current (HVDC) systems has been an alternative method of transmitting electric power from one location to another with some inherent advantages over AC transmission systems. The efficiency and rated power carrying capacity of direct current transmission lines highly depends on the converter used in transforming the current from one form to another (AC to DC and vice versa). A well configured converter reduces harmonics, increases power transfer capabilities, and reliability in that it offers high tolerance to fault along the line. Different HVDC converter topologies have been proposed, built and utilised all over the world. The two dominant types are the line commutated converter LCC and the voltage source converter VSC. This review paper evaluates these two types of converters, their operational characteristics, power rating capability, control capability and losses. The balance of the paper addresses their applications, advantages, limitations and latest developments with these technologies.


Author(s):  
Mario A. Rios ◽  
Maria F. Perez

<p>Planning of high voltage direct current (HVDC) grids requires inclusion of reliability assessment of alternatives under study. This paper proposes a methodology to evaluate the adequacy of voltage source converter/VSC-HVDC networks. The methodology analyses the performance of the system using N-1 and N-2 contingencies in order to detect weaknesses in the DC network and evaluates two types of remedial actions to keep the entire system under the acceptable operating limits. The remedial actions are applied when a violation of these limits on the DC system occurs; those include topology changes in the network and adjustments of power settings of VSC converter stations. The CIGRE B4 DC grid test system is used for evaluating the reliability/adequacy performance by means of the proposed methodology in this paper. The proposed remedial actions are effective for all contingencies; then, numerical results are as expected. This work is useful for planning and operation of grids based on VSC-HVDC technology.</p>


2014 ◽  
Vol 521 ◽  
pp. 222-228
Author(s):  
Kai Wang ◽  
Hai Shun Sun ◽  
Yu Hua ◽  
Yuan Liu ◽  
Wei Xing Lin ◽  
...  

The continuous development of alternative energy has put forward higher requirement for electricity transmission. To cope with its fluctuation characteristics, high voltage direct current (HVDC) technology has received more attention. Voltage Source Converter (VSC) based Multi-Terminal High Voltage Direct Current (MTDC) represents the future trend of HVDC technology. This paper mainly focuses on the control strategies of a four-terminal VSC based MTDC power transmission system. The operation characteristic of the system was studied, and the proposed two control strategies, master-slave control strategy and DC voltage droop control strategy, were verified through simulations. The latter control strategy was proved to be performing well under various conditions, including converter station disconnection and faults at AC side of the converter.


Sign in / Sign up

Export Citation Format

Share Document