Cyber-attack detection in healthcare using cyber-physical system and machine learning techniques

2021 ◽  
Author(s):  
Ahmad Ali AlZubi ◽  
Mohammed Al-Maitah ◽  
Abdulaziz Alarifi
2022 ◽  
pp. 220-249
Author(s):  
Md Ariful Haque ◽  
Sachin Shetty

Financial sectors are lucrative cyber-attack targets because of their immediate financial gain. As a result, financial institutions face challenges in developing systems that can automatically identify security breaches and separate fraudulent transactions from legitimate transactions. Today, organizations widely use machine learning techniques to identify any fraudulent behavior in customers' transactions. However, machine learning techniques are often challenging because of financial institutions' confidentiality policy, leading to not sharing the customer transaction data. This chapter discusses some crucial challenges of handling cybersecurity and fraud in the financial industry and building machine learning-based models to address those challenges. The authors utilize an open-source e-commerce transaction dataset to illustrate the forensic processes by creating a machine learning model to classify fraudulent transactions. Overall, the chapter focuses on how the machine learning models can help detect and prevent fraudulent activities in the financial sector in the age of cybersecurity.


2022 ◽  
Vol 31 (3) ◽  
pp. 1345-1360
Author(s):  
Sinil Mubarak ◽  
Mohamed Hadi Habaebi ◽  
Md Rafiqul Islam ◽  
Asaad Balla ◽  
Mohammad Tahir ◽  
...  

The advancement in cyber-attack technologies have ushered in various new attacks which are difficult to detect using traditional intrusion detection systems (IDS).Existing IDS are trained to detect known patterns because of which newer attacks bypass the current IDS and go undetected. In this paper, a two level framework is proposed which can be used to detect unknown new attacks using machine learning techniques. In the first level the known types of classes for attacks are determined using supervised machine learning algorithms such as Support Vector Machine (SVM) and Neural networks (NN). The second level uses unsupervised machine learning algorithms such as K-means. The experimentation is carried out with four models with NSL- KDD dataset in Openstack cloud environment. The Model with Support Vector Machine for supervised machine learning, Gradual Feature Reduction (GFR) for feature selection and K-means for unsupervised algorithm provided the optimum efficiency of 94.56 %.


2021 ◽  
Vol 11 (1) ◽  
pp. 53-57
Author(s):  
Yazeed Abdulmalik

SQL Injection Attack (SQLIA) is a common cyberattack that target web application database. With the ever increasing and varying techniques to exploit web application SQLIA vulnerabilities, there is no a comprehensive method that can solve this kind of attacks. Therefore, these various of attack techniques required to establish many methods against in order to mitigate its threats. However, most of these methods have not yet been evaluated, where it is still just theories and require to implement and measure its performance and set its limitation. Moreover, most of the existing SQL injection countermeasures either used syntax-based detection methods or a list of predefined rules to detect the SQL injection, which is vulnerable in advance and sophisticated type of attacks because attackers create new ways to evade the detection utilizing their pre-knowledge. Although semantic-based features can improve the detection, up to our knowledge, no studies focused on extracting the semantic features from SQL stamens. This paper, investigates a designed model that can improve the efficacy of the SQL injection attack detection using machine learning techniques by extracting the semantic features that can effectively indicate the SQL injection attack. Also, a tenfold approach will be used to evaluate and validate the proposed detection model.


2021 ◽  
Vol 1 (4) ◽  
pp. 22-26
Author(s):  
Ankita Saha ◽  
Chanda Pathak ◽  
Sourav Saha

The importance of cybersecurity is on the rise as we have become more technologically dependent on the internet than ever before. Cybersecurity implies the process of protecting and recovering computer systems, networks, devices, and programs from any cyber attack. Cyber attacks are an increasingly sophisticated and evolving danger to our sensitive data, as attackers employ new methods to circumvent traditional security controls. Cryptanalysis is mainly used to crack cryptographic security systems and gain access to the contents of the encrypted messages, even if the key is unknown. It focuses on deciphering the encrypted data as it works with ciphertext, ciphers, and cryptosystems to understand how they work and find techniques for weakening them. For classical cryptanalysis, the recovery of ciphertext is difficult as the time complexity is exponential. The traditional cryptanalysis requires a significant amount of time, known plaintexts, and memory. Machine learning may reduce the computational complexity in cryptanalysis. Machine learning techniques have recently been applied in cryptanalysis, steganography, and other data-securityrelated applications. Deep learning is an advanced field of machine learning which mainly uses deep neural network architecture. Nowadays, deep learning techniques are usually explored extensively to solve many challenging problems of artificial intelligence. But not much work has been done on deep learning-based cryptanalysis. This paper attempts to summarize various machine learning based approaches for cryptanalysis along with discussions on the scope of application of deep learning techniques in cryptography.


Sign in / Sign up

Export Citation Format

Share Document