A Levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network training

2017 ◽  
Vol 30 (12) ◽  
pp. 3707-3720 ◽  
Author(s):  
Shima Amirsadri ◽  
Seyed Jalaleddin Mousavirad ◽  
Hossein Ebrahimpour-Komleh
2021 ◽  
pp. 321-326
Author(s):  
Sivaprakash J. ◽  
Manu K. S.

In the advanced global economy, crude oil is a commodity that plays a major role in every economy. As Crude oil is highly traded commodity it is essential for the investors, analysts, economists to forecast the future spot price of the crude oil appropriately. In the last year the crude oil faced a historic fall during the pandemic and reached all time low, but will this situation last? There was analysis such as fundamental analysis, technical analysis and time series analyses which were carried out for predicting the movement of the oil prices but the accuracy in such prediction is still a question. Thus, it is necessary to identify better methods to forecast the crude oil prices. This study is an empirical study to forecast crude oil prices using the neural networks. This study consists of 13 input variables with one target variable. The data are divided in the ratio 70:30. The 70% data is used for training the network and 30% is used for testing. The feed forward and back propagation algorithm are used to predict the crude oil price. The neural network proved to be efficient in forecasting in the modern era. A simple neural network performs better than the time series models. The study found that back propagation algorithm performs better while predicting the crude oil price. Hence, ANN can be used by the investors, forecasters and for future researchers.


Author(s):  
Revathi A. ◽  
Sasikaladevi N.

This chapter on multi speaker independent emotion recognition encompasses the use of perceptual features with filters spaced in Equivalent rectangular bandwidth (ERB) and BARK scale and vector quantization (VQ) classifier for classifying groups and artificial neural network with back propagation algorithm for emotion classification in a group. Performance can be improved by using the large amount of data in a pertinent emotion to adequately train the system. With the limited set of data, this proposed system has provided consistently better accuracy for the perceptual feature with critical band analysis done in ERB scale.


Author(s):  
Neeraja Koppula ◽  
K. Sarada ◽  
Ibrahim Patel ◽  
R. Aamani ◽  
K. Saikumar

This chapter explains the speech signal in moving objects depending on the recognition field by retrieving the name of individual voice speech and speaker personality. The adequacy of precisely distinguishing a speaker is centred exclusively on vocal features, as voice contact with machines is getting more pervasive in errands like phone, banking exchanges, and the change of information from discourse data sets. This audit shows the location of text-subordinate speakers, which distinguishes a solitary speaker from a known populace. The highlights are eliminated; the discourse signal is enrolled for six speakers. Extraction of the capacity is accomplished utilizing LPC coefficients, AMDF computation, and DFT. By adding certain highlights as information, the neural organization is prepared. For additional correlation, the attributes are put away in models. The qualities that should be characterized for the speakers were acquired and dissected utilizing back propagation algorithm to a format picture.


Sign in / Sign up

Export Citation Format

Share Document