scholarly journals A Hybrid Differential Evolution and Back-Propagation Algorithm for Feedforward Neural Network Training

2013 ◽  
Vol 84 (14) ◽  
pp. 1-9 ◽  
Author(s):  
Partha PratimSarangi ◽  
Abhimanyu Sahu ◽  
Madhumita Panda
2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940034 ◽  
Author(s):  
Li Hongyu ◽  
Chen Hui ◽  
Wu Ying ◽  
Chen Yong ◽  
Yi Wei

The two-dimensional morphology of the cladding layer has an important influence on the quality of the cladding layer and the crack tendency. Using the powerful nonlinear processing ability of the single hidden layer feedforward neural network, a prediction model between the cladding technological parameters and the two-dimensional morphology of the cladding layer is established. Taking the cladding parameters as the input and the two-dimensional morphology of the cladding as the output, the experimental data is used to train the network to achieve a high-level mapping of the input and output. On this basis, the algorithm of extreme learning machine is used to optimize the single hidden layer feedforward neural network to overcome the problems of slow convergence speed, more network training parameters and easy local convergence in back-propagation algorithm. The results show that the relationship between the cladding process parameters and the two-dimensional morphology of the cladding layer can be roughly reflected by the back-propagation algorithm. However, the prediction results are not stable and the error rate is between 10% and 40%. The neural network optimized by the extreme learning machine is utilized to get a better prediction result. The error rate is 10–20%.


2013 ◽  
Vol 7 (2) ◽  
pp. 600-606
Author(s):  
Jatinder Kaur ◽  
Dr. Mandeep Singh ◽  
Pardeep Singh Bains ◽  
Gagandeep Singh

In this paper, we introduce the multilayer Perceptron (feedforward) neural network (MLPs) and used it for a function approximation. For the training of MLP, we have used back propagation algorithm principle. The main purpose of this paper lies in changing the number of hidden layers of MLP for achieving minimum value of mean square error.


2021 ◽  
pp. 321-326
Author(s):  
Sivaprakash J. ◽  
Manu K. S.

In the advanced global economy, crude oil is a commodity that plays a major role in every economy. As Crude oil is highly traded commodity it is essential for the investors, analysts, economists to forecast the future spot price of the crude oil appropriately. In the last year the crude oil faced a historic fall during the pandemic and reached all time low, but will this situation last? There was analysis such as fundamental analysis, technical analysis and time series analyses which were carried out for predicting the movement of the oil prices but the accuracy in such prediction is still a question. Thus, it is necessary to identify better methods to forecast the crude oil prices. This study is an empirical study to forecast crude oil prices using the neural networks. This study consists of 13 input variables with one target variable. The data are divided in the ratio 70:30. The 70% data is used for training the network and 30% is used for testing. The feed forward and back propagation algorithm are used to predict the crude oil price. The neural network proved to be efficient in forecasting in the modern era. A simple neural network performs better than the time series models. The study found that back propagation algorithm performs better while predicting the crude oil price. Hence, ANN can be used by the investors, forecasters and for future researchers.


Sign in / Sign up

Export Citation Format

Share Document