scholarly journals A deep learning framework for land-use/land-cover mapping and analysis using multispectral satellite imagery

2019 ◽  
Vol 32 (12) ◽  
pp. 8529-8544
Author(s):  
Victor Alhassan ◽  
Christopher Henry ◽  
Sheela Ramanna ◽  
Christopher Storie
2019 ◽  
Vol 3 (1) ◽  
pp. 14-27
Author(s):  
Barry Haack ◽  
Ron Mahabir

This analysis determined the best individual band and combinations of various numbers of bands for land use land cover mapping for three sites in Peru. The data included Landsat Thematic Mapper (TM) optical data, PALSAR L-band dual-polarized radar, and derived radar texture images. Spectral signatures were first obtained for each site class and separability between classes determined using divergence measures. Results show that the best single band for analysis was a TM band, which was different for each site. For two of the three sites, the second best band was a radar texture image from a large window size. For all sites the best three bands included two TM bands and a radar texture image. The original PALSAR bands were of limited value. Finally upon further analysis it was determined that no more than six bands were needed for viable classification at each study site.


2020 ◽  
Vol 30 (1) ◽  
pp. 273-286
Author(s):  
Kalyan Mahata ◽  
Rajib Das ◽  
Subhasish Das ◽  
Anasua Sarkar

Abstract Image segmentation in land cover regions which are overlapping in satellite imagery, is one crucial challenge. To detect true belonging of one pixel becomes a challenging problem while classifying mixed pixels in overlapping regions. In current work, we propose one new approach for image segmentation using a hybrid algorithm of K-Means and Cellular Automata algorithms. This newly implemented unsupervised model can detect cluster groups using hybrid 2-Dimensional Cellular-Automata model based on K-Means segmentation approach. This approach detects different land use land cover areas in satellite imagery by existing K-Means algorithm. Since it is a discrete dynamical system, cellular automaton realizes uniform interconnecting cells containing states. In the second stage of current model, we experiment with a 2-dimensional cellular automata to rank allocations of pixels among different land-cover regions. The method is experimented on the watershed area of Ajoy river (India) and Salinas (California) data set with true class labels using two internal and four external validity indices. The segmented areas are then compared with existing FCM, DBSCAN and K-Means methods and verified with the ground truth. The statistical analysis results also show the superiority of the new method.


Author(s):  
B. Varpe Shriniwas D. Payal Sandip

In the present study, an effort has been made to study in detail of Land Use/Land Cover Mapping for Sambar watershed by using Remote Sensing and GIS technique was carried out during the year of 2020-2021 in Parbhani district. In this research the Remote Sensing and Geographical Information system technique was used for identifying the land use/land cover classes with the help of ArcGIS 10.8 software. The Sambar watershed is located in 19º35ʹ78.78˝ N and 76º87ʹ88.44˝ E in the Parbhani district of Marathwada region in Maharashtra. It is covered a total area 97.01 km2. The land use/land cover map and its classes were identified by the Supervised Classification Method in ArcGIS 10.8 software by using the Landsat 8 satellite image. Total six classes are identified namely as Agricultural area, Forest area, Urban area, Barren land, Water bodies and Fallow land. The Agricultural lands are well distributed throughout the watershed area and it covers 4135 ha. (43 per cent). Forest occupies 502 ha area and sharing about 5 per cent of the total land use land cover of the study area. The Urban land occupies 390 ha. area (4 per cent) and there was a rapid expansion of settlement area. Barren land occupies 3392 ha. area (35 per cent). A water bodies occupy 630 ha. area (6 per cent) and the Fallow land occupies 650 ha (7 per cent) but well-developed dendritic drainage pattern and good water availability is in the Sambar watershed.


Sign in / Sign up

Export Citation Format

Share Document