scholarly journals Blow-up of the mean curvature at the first singular time of the mean curvature flow

Author(s):  
Longzhi Lin ◽  
Natasa Sesum
2016 ◽  
Vol 2 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Theodora Bourni ◽  
Mat Langford

AbstractWe show that any strictly mean convex translator of dimension n ≥ 3 which admits a cylindrical estimate and a corresponding gradient estimate is rotationally symmetric. As a consequence, we deduce that any translating solution of the mean curvature flow which arises as a blow-up limit of a two-convex mean curvature flow of compact immersed hypersurfaces of dimension n ≥ 3 is rotationally symmetric. The proof is rather robust, and applies to a more general class of translator equations. As a particular application, we prove an analogous result for a class of flows of embedded hypersurfaces which includes the flow of twoconvex hypersurfaces by the two-harmonic mean curvature.


2020 ◽  
Vol 18 (1) ◽  
pp. 1518-1530
Author(s):  
Xuesen Qi ◽  
Ximin Liu

Abstract In this paper, we discuss the monotonicity of the first nonzero eigenvalue of the Laplace operator and the p-Laplace operator under a forced mean curvature flow (MCF). By imposing conditions associated with the mean curvature of the initial hypersurface and the coefficient function of the forcing term of a forced MCF, and some special pinching conditions on the second fundamental form of the initial hypersurface, we prove that the first nonzero closed eigenvalues of the Laplace operator and the p-Laplace operator are monotonic under the forced MCF, respectively, which partially generalize Mao and Zhao’s work. Moreover, we give an example to specify applications of conclusions obtained above.


Author(s):  
Peng Lu ◽  
Jiuru Zhou

AbstractWe construct the ancient solutions of the hypersurface flows in Euclidean spaces studied by B. Andrews in 1994.As time {t\rightarrow 0^{-}} the solutions collapse to a round point where 0 is the singular time. But as {t\rightarrow-\infty} the solutions become more and more oval. Near the center the appropriately-rescaled pointed Cheeger–Gromov limits are round cylinder solutions {S^{J}\times\mathbb{R}^{n-J}}, {1\leq J\leq n-1}. These results are the analog of the corresponding results in Ricci flow ({J=n-1}) and mean curvature flow.


2017 ◽  
Vol 320 ◽  
pp. 674-729 ◽  
Author(s):  
Juan Dávila ◽  
Manuel del Pino ◽  
Xuan Hien Nguyen

2018 ◽  
Vol 2018 (743) ◽  
pp. 229-244 ◽  
Author(s):  
Jingyi Chen ◽  
John Man Shun Ma

Abstract Let F_{n} : (Σ, h_{n} ) \to \mathbb{C}^{2} be a sequence of conformally immersed Lagrangian self-shrinkers with a uniform area upper bound to the mean curvature flow, and suppose that the sequence of metrics \{ h_{n} \} converges smoothly to a Riemannian metric h. We show that a subsequence of \{ F_{n} \} converges smoothly to a branched conformally immersed Lagrangian self-shrinker F_{\infty} : (Σ, h) \to \mathbb{C}^{2} . When the area bound is less than 16π, the limit {F_{\infty}} is an embedded torus. When the genus of Σ is one, we can drop the assumption on convergence h_{n} \to h. When the genus of Σ is zero, we show that there is no branched immersion of Σ as a Lagrangian self-shrinker, generalizing the rigidity result of [21] in dimension two by allowing branch points.


Sign in / Sign up

Export Citation Format

Share Document