scholarly journals The distance function in the presence of an obstacle

Author(s):  
Paolo Albano ◽  
Vincenzo Basco ◽  
Piermarco Cannarsa
Keyword(s):  
Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter considers the notion of parallel residues in a building. It begins with the assumption that Δ‎ is a building of type Π‎, which is arbitrary except in a few places where it is explicitly assumed to be spherical. Δ‎ is not assumed to be thick. The chapter then elaborates on a hypothesis which states that S is the vertex set of Π‎, (W, S) is the corresponding Coxeter system, d is the W-distance function on the set of ordered pairs of chambers of Δ‎, and ℓ is the length function on (W, S). It also presents a notation in which the type of a residue R is denoted by Typ(R) and concludes with the condition that residues R and T of a building will be called parallel if R = projR(T) and T = projT(R).


2013 ◽  
Vol 1 ◽  
pp. 200-231 ◽  
Author(s):  
Andrea C.G. Mennucci

Abstract In this paper we discuss asymmetric length structures and asymmetric metric spaces. A length structure induces a (semi)distance function; by using the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempotent. As a typical application, we consider the length of paths defined by a Finslerian functional in Calculus of Variations. In the second part we generalize the setting of General metric spaces of Busemann, and discuss the newly found aspects of the theory: we identify three interesting classes of paths, and compare them; we note that a geodesic segment (as defined by Busemann) is not necessarily continuous in our setting; hence we present three different notions of intrinsic metric space.


2009 ◽  
Vol 12 (3) ◽  
pp. 151-154
Author(s):  
Sufyan A. Whaib ◽  
Keyword(s):  

2021 ◽  
Vol 13 (2) ◽  
pp. 741
Author(s):  
Wirat Krasachat ◽  
Suthathip Yaisawarng

To overcome the challenging food safety and security problem, in 2003, the Thai government initiated ‘Good Agricultural Practices’ (GAP) technology. This paper used a sample of 107 small chili farms from the Chiyaphoom province for the 2012 crop year, and data envelopment analysis (DEA) meta-frontier directional distance function technique to answer two questions: (1) Are GAP-adopting farms, on average, more efficient than conventional farms? (2) Does access to GAP technology affect farmers’ decisions to adopt GAP technology? We also developed an ‘indirect’ approach to reduce the potential sample selection bias for small samples. For the dry-season subsample, GAP farms were more technically efficient when compared with non-GAP farms. These dry-season non-GAP farms may not adopt the GAP method because they have limited access to GAP technology. For the rainy-season subsample, on average, GAP farms were more efficient than non-GAP farms at the 5% level. Access to the GAP technology is not a possible reason for non-GAP rainy season farms to not adopt the GAP technology. To enable sustainable development, government agencies and nongovernmental organizations (NGOs) must develop and implement appropriate educational and training workshops to promote and assist GAP technology adoption for chili farms in Thailand.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Pulak Konar ◽  
Samir Kumar Bhandari ◽  
Sumit Chandok ◽  
Aiman Mukheimer

AbstractIn this paper, we propose some new type of weak cyclic multivalued contraction mappings by generalizing the cyclic contraction using the δ-distance function. Several novel fixed point results are deduced for such class of weak cyclic multivalued mappings in the framework of metric spaces. Also, we construct some examples to validate the usability of the results. Various existing results of the literature are generalized.


1997 ◽  
Vol 119 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Takashi Maekawa ◽  
Wonjoon Cho ◽  
Nicholas M. Patrikalakis

Self-intersection of offsets of regular Be´zier surface patches due to local differential geometry and global distance function properties is investigated. The problem of computing starting points for tracing self-intersection curves of offsets is formulated in terms of a system of nonlinear polynomial equations and solved robustly by the interval projected polyhedron algorithm. Trivial solutions are excluded by evaluating the normal bounding pyramids of the surface subpatches mapped from the parameter boxes computed by the polynomial solver with a coarse tolerance. A technique to detect and trace self-intersection curve loops in the parameter domain is also discussed. The method has been successfully tested in tracing complex self-intersection curves of offsets of Be´zier surface patches. Examples illustrate the principal features and robustness characteristics of the method.


Sign in / Sign up

Export Citation Format

Share Document