Urinary excretion of bile acids in bile duct-ligated rats

2003 ◽  
Vol 38 (6) ◽  
pp. 561-566 ◽  
Author(s):  
Yukiko Takada ◽  
Naoyo Sano ◽  
Hajime Takikawa
1991 ◽  
Vol 280 (2) ◽  
pp. 373-377 ◽  
Author(s):  
S Dueland ◽  
J Reichen ◽  
G T Everson ◽  
R A Davis

We examined how total blockage of biliary excretion, the major pathway through which cholesterol and bile acids are removed from the body, affects liver function, cholesterol and bile acid metabolism and homoeostasis. After 4 weeks of bile-duct ligation, rats showed impaired liver function, as documented by elevations in serum bilirubin and alkaline phosphatase activity. Moreover, bile-duct ligation decreased by about 30% both the amount of microsomal cytochrome P-450 in the liver and the elimination of aminopyrine in vivo, a reliable index in vivo of microsomal mixed-function oxidase activity. Cholesterol and bile acid contents in livers of bile-duct-ligated rats were doubled compared with sham-operated controls. Despite the increase in the contents of cholesterol and bile acids in liver, activities of the respective rate-limiting enzymes, 3-hydroxy-3-methylglutaryl-CoA reductase and cholesterol 7 alpha-hydroxylase, were doubled. Serum concentrations of bile acids and free cholesterol increased 25- and 4-fold respectively. The large increase in serum bile acids was associated with a 380-fold increase in the urinary excretion of bile acids. Although there is a general decrease in cytochrome P-450 content and drug metabolism involving cytochrome P-450-containing hydroxylases, the activity of cholesterol 7 alpha-hydroxylase, also a cytochrome P-450-containing enzyme, is actually increased. These data show that complete obstruction of the bile duct results in the selective impairment of microsomal cytochrome P-450. Increased activity of 7 alpha-hydroxylase, bile acid synthesis and urinary excretion provides an alternative excretory pathway that helps to maintain cholesterol homoeostasis when the biliary excretory pathway is eliminated.


1985 ◽  
Vol 68 (1) ◽  
pp. 63-70 ◽  
Author(s):  
A. Chitranukroh ◽  
G. Taggart ◽  
B. H. Billing

1. The renal clearances of [14C]glycocholate, [14C]taurocholate and [3H]glycochenodeoxycholate-3-sulphate were determined in bile duct obstructed rats. 2. Comparisons of the bile acid clearances with glomerular filtration rates (GFR) indicate that most of the filtered bile acids are reabsorbed. 3. Inhibition studies with p-aminohippurate (PAH) and probenecid suggest that a proportion of the bile acids in urine is secreted. 4. Attempts were made to increase the renal clearance of the bile acids by the administration of pharmacological agents. 5. An infusion of sodium acetate (0.3 mol/l) increased the clearance of the radioactive bile acids and augmented the urinary excretion of endogenous 3α-hydroxy bile acids and reduced their concentration in plasma.


1966 ◽  
Vol 7 (1) ◽  
pp. 83-94 ◽  
Author(s):  
G.S. Boyd ◽  
M.A. Eastwood ◽  
N. Maclean
Keyword(s):  

2020 ◽  
Vol 18 (5) ◽  
pp. 36-41
Author(s):  
V.P. Novikova ◽  
◽  
L.N. Belousova ◽  

Bile acid diarrhoea is a common cause of chronic diarrhoea associated with disturbance of the enterohepatic circulation: either excessive biosynthesis/secretion of bile acids or disordered absorption of bile acids in the ileum. At the same time bile acid diarrhoea is an insufficiently studied, frequently underestimated condition, and the questions remain concerning its diagnosis and management. The work discusses the main groups of causes of this pathology, modern diagnostic methods and the difficulties of a differential search. Also, the article offers information about the diet therapy of bile duct diarrhoea and the main groups of administered medications, in particular, modern enterosorbents.


2017 ◽  
Vol 35 (3) ◽  
pp. 210-216 ◽  
Author(s):  
Motoko Sasaki ◽  
Yasuni Nakanuma

Background: Primary biliary cholangitis (PBC) is characterized by a high prevalence of serum anti-mitochondrial antibodies against the E2 subunit of the pyruvate dehydrogenase complex and bile duct lesions called chronic non-suppurative destructive cholangitis (CNSDC) in small bile ducts, eventually followed by extensive bile duct loss and biliary cirrhosis. Macroautophagy (a major type of autophagy) is a process of cellular self-digestion that plays a critical role in energy homeostasis and in the cytoprotection to various stresses. Deregulated autophagy is thought to be associated with various human diseases. Key Messages: Accumulating evidences suggest that deregulated autophagy may be a central player in the pathogenesis of PBC. Damaged cholangiocytes involved in CNSDC show vesicular expression of autophagy marker LC3 and accumulation of p62/sequestosome-1, suggesting deregulated autophagy. Deregulated autophagy may be involved in the autoimmune process via the abnormal expression of mitochondrial antigens and also in cholangiocyte senescence in bile duct lesions in PBC. In vitro study showed that hydrophobic bile acids, such as glycochenodeoxycholic acid (GCDC), as well as serum deprivation and oxidative stress, cause autophagy, deregulated autophagy and abnormal expression of mitochondrial antigens followed by cellular senescence in cholangiocytes. Although exact mechanisms of deregulated autophagy remain to be clarified, endoplasmic reticulum (ER) stress may be a plausible cause of deregulated autophagy induced by GCDC in cholangiocytes. Impaired ‘biliary bicarbonate umbrella' may further exacerbate the toxicity of GCDC to cholangiocytes. Interestingly, pretreatment with ursodeoxycholic acid (UDCA) and tauro-UDCA, which is a chemical chaperone enhancing the adaptive capacity of the ER, significantly suppressed ER stress, deregulated autophagy and cellular senescence induced by GCDC and other stresses in cholangiocytes. Conclusions: GCDC may play a role in the occurrence of deregulated autophagy and cellular senescence at least partly through the induction of ER stress in PBC. Deregulated autophagy and cellular senescence can be a promising therapeutic target in PBC.


1986 ◽  
Vol 79 (9) ◽  
pp. 522-527 ◽  
Author(s):  
Xu Guorong ◽  
C J C Kirk ◽  
A W Goode

Changes in biliary concentrations of bile acids, phospholipids and cholesterol and biliary pressures were measured in dogs. These parameters were studied during 7-day periods of partial biliary obstruction, of varying degrees, and after 24-hour and 48-hour periods of complete obstruction. The samples were obtained via an exteriorized but intact enterohepatic circulation allowing the introduction of varying degrees of obstruction and bile sampling. Biliary obstruction reduced the concentration of all biliary lipids especially when the obstruction produced pressures in excess of 75% of the maximum biliary secretion pressure. Only immediately after the release of a 48-hour period of complete obstruction did the risk of cholesterol supersaturation of bile occur. However, at that time there was a greatly reduced concentration of lipids in the bile and the amount of cholesterol that could potentially have precipitated was very small. It is suggested that this supersaturation would not play a significant role in the formation of gallstones.


Sign in / Sign up

Export Citation Format

Share Document