Impact-driven broadband piezoelectric energy harvesting using a two-degrees-of-freedom structure

2020 ◽  
Vol 26 (6) ◽  
pp. 1915-1924
Author(s):  
Wei-Jiun Su
Author(s):  
Rodrigo Tumolin Rocha ◽  
Angelo Marcelo Tusset ◽  
José Manoel Balthazar ◽  
Frederic Conrad Janzen

2020 ◽  
Vol 15 (12) ◽  
Author(s):  
Rodrigo T. Rocha ◽  
Angelo M. Tusset ◽  
Mauricio A. Ribeiro ◽  
Wagner B. Lenz ◽  
Remei Haura Junior ◽  
...  

Abstract In this paper, we consider the application of the piezoelectric energy harvesting using a portal frame structure of two-degrees-of-freedom. The piezoelectric material is considered as a linear device using a capacitive mathematical model. The portal structure is of two-degrees-of-freedom considering with quadratic coupling between the first and second modes of vibration. 2:1 internal resonance between the first and second modes is set, which is a particular condition of this type of system due to the appearance of a saturation phenomenon. As this phenomenon causes the system to start vibrating from the second mode and, at steady-state, vibrates at the first mode, the objective of this work is to verify the energy uptake, considering the different positioning of a piezoelectric material, which is coupled to the supported beam and/or to the column. In addition, the structure is excited by a nonideal DC motor with a limited power supply. The results show a considerably nonlinear behavior due to the nonideal motor, and, with the saturation phenomenon, it is more efficient to collect energy by coupling the PZT to the column. The investigation of the stability of the system due to the piezoelectric coefficient Θ is also taken into account, which is carried out by numerical tools as phase planes, Poincare maps, bifurcation diagrams, and 0–1 test.


Author(s):  
Rodrigo T Rocha ◽  
Angelo M Tusset ◽  
Mauricio A Ribeiro ◽  
Wagner B Lenz ◽  
Jose M Balthazar

In this paper, a piezoelectric energy harvesting application on a portal frame of two-degrees-of-freedom considering a quadratic coupling between the coordinates with two-to-one internal resonance is considered. The piezoelectric material is considered as a linear device using a voltage and a charge mathematical model. The equations of motion of the system were obtained by applying the energy method of Lagrange, and the method of multiple scales is applied to find an analytical approximated solution of the equations of motion. Numerical results showed that the voltage model and a charge model have good agreement in relation to the behavior and amplitudes of displacement of the system.


2020 ◽  
Vol 59 (SP) ◽  
pp. SPPD04
Author(s):  
S. Aphayvong ◽  
T. Yoshimura ◽  
S. Murakami ◽  
K. Kanda ◽  
N. Fujimura

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3512 ◽  
Author(s):  
Corina Covaci ◽  
Aurel Gontean

The goal of this paper is to review current methods of energy harvesting, while focusing on piezoelectric energy harvesting. The piezoelectric energy harvesting technique is based on the materials’ property of generating an electric field when a mechanical force is applied. This phenomenon is known as the direct piezoelectric effect. Piezoelectric transducers can be of different shapes and materials, making them suitable for a multitude of applications. To optimize the use of piezoelectric devices in applications, a model is needed to observe the behavior in the time and frequency domain. In addition to different aspects of piezoelectric modeling, this paper also presents several circuits used to maximize the energy harvested.


Sign in / Sign up

Export Citation Format

Share Document