Effects of vesicular-arbuscular mycorrhizal inoculation at different soil P availabilities on growth and nutrient uptake of in vitro propagated coffee ( Coffea arabica L. ) plants

Mycorrhiza ◽  
1997 ◽  
Vol 6 (6) ◽  
pp. 493-497 ◽  
Author(s):  
P. Vaast ◽  
R. J. Zasoski ◽  
C. S. Bledsoe
HortScience ◽  
1990 ◽  
Vol 25 (4) ◽  
pp. 416-419 ◽  
Author(s):  
F. Ponton ◽  
Y. Piché ◽  
S. Parent ◽  
M. Caron

Rooted plantlets of in vitro micropropagated Boston fern [Nephrolepis exaltata (L.) Schott var. Whitmanii] were transferred to pots containing a brown peat-based mix and simultaneously inoculated with one of four species of Glomus. Glomus intraradices and G. clarum formed rapid and extensive infection in Nephrolepis exaltata roots, while Glomus vesiculiferum and G. versiforme showed a significantly slower rate of infection. The high P fertilized control performed better than the other treatments, except in the number of fronds, which was similar. From the four mycorrhizal treatments, plants inoculated with Glomus vesiculiferum showed the most significant increase in growth when compared with the low P fertilization control. These results led us to re-examine vesicular-arbuscular mycorrhizal inoculation as an alternative to higher P fertilization in horticultural Boston fern production.


2012 ◽  
Vol 68 (3) ◽  
pp. 533-538 ◽  
Author(s):  
Wellington Ronildo Clarindo ◽  
Carlos Roberto Carvalho ◽  
Maria Andréia Corrêa Mendonça

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1861
Author(s):  
Yanelis Castilla Valdés ◽  
Mukund R. Shukla ◽  
María Esther González Vega ◽  
Praveen K. Saxena

Coffee (Coffea spp.) is an important tropical agricultural crop that has significant economic and social importance in the world. The ex situ conservation of plant genetic resources through seeds is not feasible due to the sensitivity of coffee seed to desiccation and low temperatures. The cryopreservation of zygotic embryos may allow for an efficient and long-term storage of coffee germplasm. This study describes the cryopreservation methods for conserving zygotic embryos of Coffea arabica L. for the long-term conservation of currently available germplasm. Zygotic embryos were successfully cryopreserved in liquid nitrogen at −196 °C under controlled environmental conditions with either droplet-vitrification or encapsulation–vitrification protocols without dehydration. Zygotic embryos had the highest regrowth (100%) following droplet-vitrification cryopreservation using the Plant Vitrification Solution 3 (PVS3) for 40 min at 23 °C. In the case of encapsulation–vitrification using PVS3 for 40 min at 23 °C, the embryo regeneration response was 78%. Plantlets were recovered following shoot multiplication using a temporary immersion system (TIS) and in vitro rooting. The prolific rooting of shoots was observed after 4 weeks of culture in the liquid medium with plugs made of the inert substrate Oasis® In vitro Express (IVE) compared to the semi-solid medium. The successful cryopreservation of coffee zygotic embryos using droplet vitrification and encapsulation–vitrification followed by micropropagation in temporary immersion culture system has not been reported earlier and together these technologies are anticipated to further facilitate the initiatives for the conservation and distribution of coffee germplasm.


Sign in / Sign up

Export Citation Format

Share Document