scholarly journals Non-tidal aliasing in seasonal sea-level variability and annual Rossby waves as observed by satellite altimetry

1997 ◽  
Vol 15 (11) ◽  
pp. 1478-1488 ◽  
Author(s):  
G. Chen ◽  
R. Ezraty

Abstract. It is becoming well known that aliasing associated with ocean tides could be a major source of systematic error in altimeter sea-level measurements, due to asynoptic sampling and imperfect tide modelling. However, it has been shown that signals of non-tidal origin may also contribute significantly to the observed aliasing. In this paper, numerical simulations are performed to demonstrate the full aliasing potential associated with altimeter observations of seasonal sea-level variability and annual Rossby waves. Our results indicate that ignorance of non-tidal aliasing may lead to the possibility of underestimating the total aliasing and misinterpreting or overlooking existing geophysical phenomena. Therefore, it is argued that an entire aliasing picture should be kept in mind when satellite altimeter data are analysed.

1996 ◽  
Vol 3 (2) ◽  
pp. 115-126 ◽  
Author(s):  
R. E. Glazman ◽  
A. Fabrikant ◽  
A. M. Greysukh

Abstract. Using a recently proposed technique for statistical analysis of non-gridded satellite altimeter data, regime of long equatorially-trapped baroclinic Rossby waves is studied. One-dimensional spatial and spatiotemporal autocorrelation functions of sea surface height (SSH) variations yield a broad spectrum of baroclinic Rossby waves and permit determination of their propagation speed. The 1-d wavenumber spectrum of zonal variations is given by a power-law k-2 on scales from about 103 km to 104 km. We demonstrate that the observed wave regime exhibits features of soliton turbulence developing in the long baroclinic Rossby waves. However, being limited to second statistical moments, the present analysis does not allow us to rule out a possibility of weak wave turbulence.


Sign in / Sign up

Export Citation Format

Share Document