Correlation analysis of demographic and anthropometric factors, hip flexion angle and conus medullaris displacement with unilateral and bilateral straight leg raise

2015 ◽  
Vol 25 (3) ◽  
pp. 724-731 ◽  
Author(s):  
Marinko Rade ◽  
Mervi Könönen ◽  
Jarkko Marttila ◽  
Ritva Vanninen ◽  
Michael Shacklock ◽  
...  
Sports ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 28
Author(s):  
Olyvia Donti ◽  
Vasiliki Gaspari ◽  
Kostantina Papia ◽  
Ioli Panidi ◽  
Anastasia Donti ◽  
...  

Τhis study examined changes in hip joint flexion angle after an intermittent or a continuous static stretching protocol of equal total duration. Twenty-seven female subjects aged 19.9 ± 3.0 years (14 artistic and rhythmic gymnasts and 13 team sports athletes), performed 3 min of intermittent (6 × 30 s with 30 s rest) or continuous static stretching (3 min) of the hip extensors, with an intensity of 80–90 on a 100-point visual analogue scale. The order of stretching was randomized and counterbalanced, and each subject performed both conditions. Hip flexion angle was measured with the straight leg raise test for both legs after warm-up and immediately after stretching. Both stretching types equally increased hip flexion angle by ~6% (continuous: 140.9° ± 20.4° to 148.6° ± 18.8°, p = 0.047; intermittent: 141.8° ± 20.3° to 150.0° ± 18.8°, p = 0.029) in artistic and rhythmic gymnasts. In contrast, in team sports athletes, only intermittent stretching increased hip flexion angle by 13% (from 91.0° ± 7.2° to 102.4° ± 14.5°, p = 0.001), while continuous stretching did not affect hip angle (from 92.4° ± 6.9° vs. 93.1° ± 9.2°, p = 0.99). The different effect of intermittent vs. continuous stretching on hip flexion between gymnasts and team sports athletes suggests that responses to static stretching are dependent on stretching mode and participants training experience.


2021 ◽  
Vol 56 ◽  
pp. 102493
Author(s):  
Takuya Kato ◽  
Keigo Taniguchi ◽  
Daisuke Kikukawa ◽  
Taiki Kodesho ◽  
Masaki Katayose

2005 ◽  
Vol 33 (9) ◽  
pp. 1356-1364 ◽  
Author(s):  
Bing Yu ◽  
Scott B. McClure ◽  
James A. Onate ◽  
Kevin M. Guskiewicz ◽  
Donald T. Kirkendall ◽  
...  

Background Gender differences in lower extremity motion patterns were previously identified as a possible risk factor for non-contact anterior cruciate ligament injuries in sports. Hypothesis Gender differences in lower extremity kinematics in the stop-jump task are functions of age for youth soccer players between 11 and 16 years of age. Study Design Descriptive laboratory study. Methods Three-dimensional videographic data were collected for 30 male and 30 female adolescent soccer players between 11 and 16 years of age performing a stop-jump task. The age effects on hip and knee joint angular motions were compared between genders using multiple regression analyses with dummy variables. Results Gender and age have significant interaction effects on standing height (P = .00), body mass (P = .00), knee flexion angle at initial foot contact with the ground (P = .00), maximum knee flexion angle (P = .00), knee valgus-varus angle (P = .00), knee valgus-varus motion (P = .00), and hip flexion angle at initial foot contact with the ground (P = .00). Conclusion Youth female recreational soccer players have decreased knee and hip flexion angles at initial ground contact and decreased knee and hip flexion motions during the landing of the stop-jump task compared to those of their male counterparts. These gender differences in knee and hip flexion motion patterns of youth recreational soccer players occur after 12 years of age and increase with age before 16 years. Clinical Relevance The results of this study provide significant information for research on the prevention of noncontact anterior cruciate ligament injuries.


Sports ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 43
Author(s):  
Eleftherios Kellis ◽  
Athanasios Ellinoudis ◽  
and Nikolaos Kofotolis

The purpose of this study was to compare the hamstring to quadriceps ratio (H:Q) obtained from three different hip flexion angles. Seventy-three young athletes performed maximum isokinetic concentric and eccentric knee extension and flexion efforts at 60 °·s−1 and 240 °·s−1 from hip flexion angles of 90°, 60°, and 120°. The conventional (concentric to concentric), functional (eccentric to concentric) and mixed (eccentric at 30 °·s−1 to concentric torque at 240 °·s−1) H: Q torque ratios and the electromyographic activity from the rectus femoris and biceps femoris were analyzed. The conventional H:Q ratios and the functional H:Q ratios at 60 °·s−1 did not significantly differ between the three testing positions (p > 0.05). In contrast, testing from the 90° hip flexion angle showed a greater functional torque ratio at 240 °·s−1 and a mixed H:Q torque ratio compared with the other two positions (p < 0.05). The hip flexion angle did not influence the recorded muscle activation signals (p > 0.05). For the range of hip flexion angles tested, routine isokinetic assessment of conventional H:Q ratio and functional H:Q ratio at slow speed is not angle-dependent. Should assessment of the functional H:Q ratio at fast angular velocity or the mixed ratio is required, then selection of hip flexion angle is important.


2017 ◽  
Vol 63 ◽  
pp. 99-105 ◽  
Author(s):  
J. Van Houcke ◽  
A. Schouten ◽  
G. Steenackers ◽  
D. Vandermeulen ◽  
C. Pattyn ◽  
...  

2017 ◽  
Vol 11 (4) ◽  
pp. 562-569 ◽  
Author(s):  
Ken Sasaki ◽  
Michio Hongo ◽  
Naohisa Miyakoshi ◽  
Toshiki Matsunaga ◽  
Shin Yamada ◽  
...  

<sec><title>Study Design</title><p>In vivo biomechanical study using a three-dimensional (3D) musculoskeletal model for elderly individuals with or without pelvic retroversion.</p></sec><sec><title>Purpose</title><p>To evaluate the effect of pelvic retroversion on the sagittal alignment of the spine, pelvis, and lower limb in elderly females while standing and walking.</p></sec><sec><title>Overview of Literature</title><p>Patients with hip–spine syndrome have concurrent hip-joint and spine diseases. However, the dynamic sagittal alignment between the hip joint and spine has rarely been investigated. We used a 3D musculoskeletal model to evaluate global spinopelvic parameters, including spinal inclination and pelvic tilt (PT).</p></sec><sec><title>Methods</title><p>A total of 32 ambulant females (mean age=78 years) without assistance were enrolled in the study. On the basis of the radiographic measurement for PT, participants were divided into the pelvic retroversion group (R-group; PT≥20°) and the normal group (N-group; PT&lt;20°). A 3D musculoskeletal motion analysis system was used to analyze the calculated value for the alignment of spine, pelvis, and lower limb, including calculated (C)-PT, sagittal vertical axis (C-SVA), pelvic incidence, lumbar lordosis, T1 pelvic angle (C-TPA), as well as knee and hip flexion angles while standing and walking.</p></sec><sec><title>Results</title><p>While standing, C-PT and C-TPA in the R-group were significantly larger than those in the N-group. Hip angle was significantly smaller in the R-group than in the N-group, unlike knee angle, which did not show difference. While walking, C-SVA and C-TPA were significantly increased, whereas C-PT decreased compared with those while standing. The maximum hip-flexion angle was significantly smaller in the R-group than in the N-group. There was a significant correlation between the radiographic and calculated parameters.</p></sec><sec><title>Conclusions</title><p>The 3D musculoskeletal model was useful in evaluating the sagittal alignment of the spine, pelvis, and leg. Spinopelvic sagittal alignment showed deterioration while walking. C-PT was significantly decreased while walking in the R-group, indicating possible compensatory mechanisms attempting to increase coverage of the femoral head. The reduction in the hip flexion angle in the R-group was also considered as a compensatory mechanism.</p></sec>


2021 ◽  
pp. 759-765
Author(s):  
Caitlyn Heredia ◽  
Robert G. Lockie ◽  
Scott K. Lynn ◽  
Derek N. Pamukoff

It is unclear if the Functional Movement Screen (FMS) scoring criteria identify kinematics that have been associated with lower extremity injury risk. The purpose was to compare lower extremity kinematics of the overhead deep squat (OHDS) during the FMS between individuals who were grouped on FMS scoring. Forty-five adults who were free of injury and without knowledge of the FMS or its scoring criteria (males = 19, females = 26; height = 1.68 0.08 m; mass = 70.7 7 13.0 kg). Three-dimensional lower extremity kinematics during an OHDS were measured using a motion capture system. One-way MANOVA was used to compare kinematic outcomes (peak hip flexion angle, hip adduction angle, knee flexion angle, knee abduction angle, knee internal rotation angle, and ankle dorsiflexion angle) between FMS groups. Those who scored a 3 had greater peak hip flexion angle (F2,42 = 8.75; p = 0.001), knee flexion angle (F2,42 = 13.53; p = 0.001), knee internal rotation angle (F2,42 = 12.91; p = 0.001), and dorsiflexion angle (F2,42 = 9.00; p = 0.001) compared to those who scored a 2 or a 1. However, no differences were found in any outcome between those who scored a 2 and those who scored a 1, or in frontal plane hip or knee kinematics. FMS scoring for the OHDS identified differences in squat depth, which was characterized by larger peak hip, knee, and dorsi- flexion angles in those who scored a 3 compared with those who scored 2 or 1. However, no differences were found between those who scored a 2 or 1, and caution is recommended when interpreting these scores. Despite a different FMS score, few differences were observed in frontal or transverse plane hip and knee kinematics, and other tasks may be needed to assess frontal plane kinematics.


2020 ◽  
Vol 74 (1) ◽  
pp. 131-142
Author(s):  
Roland van den Tillaar ◽  
Eric Helms

Abstract The aim of this study was to compare 6-RM muscle activation and kinematics in back squats with low and high barbell placements. Twelve resistance-trained males (23.5 ± 2.6 years, 86.8 ± 21.3 kg, 1.81 ± 0.08 m) with a minimum of 2 years of squatting experience performed a 6-RM using high and low barbell placements while muscle activation of eight muscles and joint kinematics were measured. During high barbell placement squats, lifting time was longer, with lower average velocity than low barbell placement. This was accompanied by a lesser knee flexion angle at the lowest point of the squat, and larger hip flexion angles during high, compared to low barbell squats. Furthermore, peak angular ankle, knee and hip velocities in the descending phase developed differently between conditions. No significant differences in muscle activation were found between conditions. Thus, our data suggests gross muscular adaptations between barbell placements may be similar over time, and therefore, from a muscular development standpoint, both squat styles are valid. Furthermore, unlike the low barbell placement, fatigue may manifest earlier itself in the high barbell squats during 6-RMs as sets progress toward a lifter’s maximal capacity, altering kinematics, especially in the last repetition.


Sign in / Sign up

Export Citation Format

Share Document