scholarly journals Lights Out on graphs

Author(s):  
Abraham Berman ◽  
Franziska Borer ◽  
Norbert Hungerbühler

AbstractWe model the Lights Out game on general simple graphs in the framework of linear algebra over the field $$\mathbb{F}_{2}$$ F 2 . Based upon a version of the Fredholm alternative, we introduce a separating invariant of the game, i.e., an initial state can be transformed into a final state if and only if the values of the invariant of both states agree. We also investigate certain states with particularly interesting properties. Apart from the classical version of the game, we propose several variants, in particular a version with more than only two states (light on, light off), where the analysis relies on systems of linear equations over the ring $$\mathbb{Z}_{n}$$ Z n . Although it is easy to find a concrete solution of the Lights Out problem, we show that it is NP-hard to find a minimal solution. We also propose electric circuit diagrams to actually realize the Lights Out game.

Author(s):  
A. I. Belousov

The main objective of this paper is to prove a theorem according to which a method of successive elimination of unknowns in the solution of systems of linear equations in the semi-rings with iteration gives the really smallest solution of the system. The proof is based on the graph interpretation of the system and establishes a relationship between the method of sequential elimination of unknowns and the method for calculating a cost matrix of a labeled oriented graph using the method of sequential calculation of cost matrices following the paths of increasing ranks. Along with that, and in terms of preparing for the proof of the main theorem, we consider the following important properties of the closed semi-rings and semi-rings with iteration.We prove the properties of an infinite sum (a supremum of the sequence in natural ordering of an idempotent semi-ring). In particular, the proof of the continuity of the addition operation is much simpler than in the known issues, which is the basis for the well-known algorithm for solving a linear equation in a semi-ring with iteration.Next, we prove a theorem on the closeness of semi-rings with iteration with respect to solutions of the systems of linear equations. We also give a detailed proof of the theorem of the cost matrix of an oriented graph labeled above a semi-ring as an iteration of the matrix of arc labels.The concept of an automaton over a semi-ring is introduced, which, unlike the usual labeled oriented graph, has a distinguished "final" vertex with a zero out-degree.All of the foregoing provides a basis for the proof of the main theorem, in which the concept of an automaton over a semi-ring plays the main role.The article's results are scientifically and methodologically valuable. The proposed proof of the main theorem allows us to relate two alternative methods for calculating the cost matrix of a labeled oriented graph, and the proposed proofs of already known statements can be useful in presenting the elements of the theory of semi-rings that plays an important role in mathematical studies of students majoring in software technologies and theoretical computer science.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Renato Maria Prisco ◽  
Francesco Tramontano

Abstract We propose a novel local subtraction scheme for the computation of Next-to-Leading Order contributions to theoretical predictions for scattering processes in perturbative Quantum Field Theory. With respect to well known schemes proposed since many years that build upon the analysis of the real radiation matrix elements, our construction starts from the loop diagrams and exploits their dual representation. Our scheme implements exact phase space factorization, handles final state as well as initial state singularities and is suitable for both massless and massive particles.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Zhijun Luo ◽  
Lirong Wang

A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.


2015 ◽  
Vol 15 (01n02) ◽  
pp. 1550001
Author(s):  
ILKER NADI BOZKURT ◽  
HAI HUANG ◽  
BRUCE MAGGS ◽  
ANDRÉA RICHA ◽  
MAVERICK WOO

This paper introduces a type of graph embedding called a mutual embedding. A mutual embedding between two n-node graphs [Formula: see text] and [Formula: see text] is an identification of the vertices of V1 and V2, i.e., a bijection [Formula: see text], together with an embedding of G1 into G2 and an embedding of G2 into G1 where in the embedding of G1 into G2, each node u of G1 is mapped to π(u) in G2 and in the embedding of G2 into G1 each node v of G2 is mapped to [Formula: see text] in G1. The identification of vertices in G1 and G2 constrains the two embeddings so that it is not always possible for both to exhibit small congestion and dilation, even if there are traditional one-way embeddings in both directions with small congestion and dilation. Mutual embeddings arise in the context of finding preconditioners for accelerating the convergence of iterative methods for solving systems of linear equations. We present mutual embeddings between several types of graphs such as linear arrays, cycles, trees, and meshes, prove lower bounds on mutual embeddings between several classes of graphs, and present some open problems related to optimal mutual embeddings.


Sign in / Sign up

Export Citation Format

Share Document