The dependences on initial data for the b-family equation in critical Besov space

2014 ◽  
Vol 177 (3) ◽  
pp. 471-492 ◽  
Author(s):  
Hao Tang ◽  
Shijie Shi ◽  
Zhengrong Liu
2017 ◽  
Vol 18 (4) ◽  
pp. 829-854 ◽  
Author(s):  
Jiecheng Chen ◽  
Renhui Wan

Ill-posedness for the compressible Navier–Stokes equations has been proved by Chen et al. [On the ill-posedness of the compressible Navier–Stokes equations in the critical Besov spaces, Revista Mat. Iberoam.31 (2015), 1375–1402] in critical Besov space $L^{p}$$(p>6)$ framework. In this paper, we prove ill-posedness with the initial data satisfying $$\begin{eqnarray}\displaystyle \Vert \unicode[STIX]{x1D70C}_{0}-\bar{\unicode[STIX]{x1D70C}}\Vert _{{\dot{B}}_{p,1}^{\frac{3}{p}}}\leqslant \unicode[STIX]{x1D6FF},\quad \Vert u_{0}\Vert _{{\dot{B}}_{6,1}^{-\frac{1}{2}}}\leqslant \unicode[STIX]{x1D6FF}. & & \displaystyle \nonumber\end{eqnarray}$$ To accomplish this goal, we require a norm inflation coming from the coupling term $L(a)\unicode[STIX]{x1D6E5}u$ instead of $u\cdot \unicode[STIX]{x1D6FB}u$ and construct a new decomposition of the density.


2011 ◽  
Vol 271-273 ◽  
pp. 791-796
Author(s):  
Kun Qu ◽  
Yue Zhang

In this paper we prove the global existence for the two-dimensional Euler equations in the critical Besov space. Making use of a new estimate of transport equation and Littlewood-Paley theory, we get the global existence result.


2014 ◽  
Vol 144 (6) ◽  
pp. 1127-1154 ◽  
Author(s):  
Taoufik Hmidi ◽  
Samira Sulaiman

We study the low-Mach-number limit for the two-dimensional isentropic Euler system with ill-prepared initial data belonging to the critical Besov space . By combining Strichartz estimates with the special structure of the vorticity, we prove that the lifespan of the solutions goes to infinity as the Mach number goes to zero. We also prove strong convergence results of the incompressible parts to the solution of the incompressible Euler system.


Sign in / Sign up

Export Citation Format

Share Document