An approach to objective analysis of cerebrospinal fluid flow dynamics with phase-contrast magnetic resonance imaging

2014 ◽  
Vol 156 (11) ◽  
pp. 2207-2208
Author(s):  
Murat Ucar ◽  
Nil Tokgoz
1999 ◽  
Vol 90 (6) ◽  
pp. 1546-1550. ◽  
Author(s):  
Christian Kolbitsch ◽  
Michael Schocke ◽  
Ingo H. Lorenz ◽  
Christian Kremser ◽  
Fritz Zschiegner ◽  
...  

Background Cerebrospinal fluid (CSF) outflow to intra- and extracranial subarachnoid spaces caused by arterial inflow to the brain predominantly compensates systolic increases in cerebral blood volume. Phase-contrast magnetic resonance imaging is a new tool for noninvasive assessment of CSF displacement by measuring CSF peak velocity (CSFV(Peak)). The authors tested this new tool in an experimental human model of increased intracranial pressure and reduced cerebral capacity by means of continuous positive airway pressure (CPAP) breathing. Methods The authors investigated systolic CSFV(Peak) in the aqueduct of Sylvius in 11 awake, normocapnic (end-tidal carbon dioxide [ET(CO2)] = 40 mmHg) volunteers without CPAP and at two different CPAP levels (6 and 12 cm H2O) by means of electroencephalography-gated phase-contrast magnetic resonance imaging. Results Administration of 6 cm H2O CPAP did not change systolic CSFV(Peak) (-4.9+/-2.8 cm/s vs. control: -5.1+/-2.7 cm/s), whereas 12 cm H2O CPAP significantly reduced systolic CSFV(Peak) (-4.0+/-1.8 cm/s vs. control: -5.1+/-2.7 cm/s; P < 0.05). Conclusions These findings in awake volunteers show that monitoring CSFV(Peak) in the aqueduct of Sylvius is a sensitive method for detecting even minor impairment of cerebral capacity caused by experimentally induced increases in intracranial pressure.


Sign in / Sign up

Export Citation Format

Share Document