Analysis and very short range forecast of cyclone “AILA” with radar data assimilation with rapid intermittent cycle using ARPS 3DVAR and cloud analysis techniques

2014 ◽  
Vol 124 (1-2) ◽  
pp. 97-111 ◽  
Author(s):  
Kuldeep Srivastava ◽  
Rashmi Bhardwaj
2016 ◽  
Vol 55 (3) ◽  
pp. 673-690 ◽  
Author(s):  
Eder Paulo Vendrasco ◽  
Juanzhen Sun ◽  
Dirceu Luis Herdies ◽  
Carlos Frederico de Angelis

AbstractIt is known from previous studies that radar data assimilation can improve short-range forecasts of precipitation, mainly when radial wind and reflectivity are available. However, from the authors’ experience radar data assimilation, when using the three-dimensional variational data assimilation (3DVAR) technique, can produce spurious precipitation results and large errors in the position and amount of precipitation. One possible reason for the problem is attributed to the lack of proper balance in the dynamical and microphysical fields. This work attempts to minimize this problem by adding a large-scale analysis constraint in the cost function. The large-scale analysis constraint is defined by the departure of the high-resolution 3DVAR analysis from a coarser-resolution large-scale analysis. It is found that this constraint is able to guide the assimilation process in such a way that the final result still maintains the large-scale pattern, while adding the convective characteristics where radar data are available. As a result, the 3DVAR analysis with the constraint is more accurate when verified against an independent dataset. The performance of this new constraint on improving precipitation forecasts is tested using six convective cases and verified against radar-derived precipitation by employing four skill indices. All of the skill indices show improved forecasts when using the methodology presented in this paper.


2021 ◽  
Vol 253 ◽  
pp. 105473
Author(s):  
Serguei Ivanov ◽  
Silas Michaelides ◽  
Igor Ruban ◽  
Demetris Charalambous ◽  
Filippos Tymvios

2019 ◽  
Vol 148 (1) ◽  
pp. 63-81 ◽  
Author(s):  
Kevin Bachmann ◽  
Christian Keil ◽  
George C. Craig ◽  
Martin Weissmann ◽  
Christian A. Welzbacher

Abstract We investigate the practical predictability limits of deep convection in a state-of-the-art, high-resolution, limited-area ensemble prediction system. A combination of sophisticated predictability measures, namely, believable and decorrelation scale, are applied to determine the predictable scales of short-term forecasts in a hierarchy of model configurations. First, we consider an idealized perfect model setup that includes both small-scale and synoptic-scale perturbations. We find increased predictability in the presence of orography and a strongly beneficial impact of radar data assimilation, which extends the forecast horizon by up to 6 h. Second, we examine realistic COSMO-KENDA simulations, including assimilation of radar and conventional data and a representation of model errors, for a convectively active two-week summer period over Germany. The results confirm increased predictability in orographic regions. We find that both latent heat nudging and ensemble Kalman filter assimilation of radar data lead to increased forecast skill, but the impact is smaller than in the idealized experiments. This highlights the need to assimilate spatially and temporally dense data, but also indicates room for further improvement. Finally, the examination of operational COSMO-DE-EPS ensemble forecasts for three summer periods confirms the beneficial impact of orography in a statistical sense and also reveals increased predictability in weather regimes controlled by synoptic forcing, as defined by the convective adjustment time scale.


2020 ◽  
Vol 10 (16) ◽  
pp. 5493 ◽  
Author(s):  
Jingnan Wang ◽  
Lifeng Zhang ◽  
Jiping Guan ◽  
Mingyang Zhang

Satellite and radar observations represent two fundamentally different remote sensing observation types, providing independent information for numerical weather prediction (NWP). Because the individual impact on improving forecast has previously been examined, combining these two resources of data potentially enhances the performance of weather forecast. In this study, satellite radiance, radar radial velocity and reflectivity are simultaneously assimilated with the Proper Orthogonal Decomposition (POD)-based ensemble four-dimensional variational (4DVar) assimilation method (referred to as POD-4DEnVar). The impact is evaluated on continuous severe rainfall processes occurred from June to July in 2016 and 2017. Results show that combined assimilation of satellite and radar data with POD-4DEnVar has the potential to improve weather forecast. Averaged over 22 forecasts, RMSEs indicate that though the forecast results are sensitive to different variables, generally the improvement is found in different pressure levels with assimilation. The precipitation skill scores are generally increased when assimilation is carried out. A case study is also examined to figure out the contributions to forecast improvement. Better intensity and distribution of precipitation forecast is found in the accumulated rainfall evolution with POD-4DEnVar assimilation. These improvements are attributed to the local changes in moisture, temperature and wind field. In addition, with radar data assimilation, the initial rainwater and cloud water conditions are changed directly. Both experiments can simulate the strong hydrometeor in the precipitation area, but assimilation spins up faster, strengthening the initial intensity of the heavy rainfall. Generally, the combined assimilation of satellite and radar data results in better rainfall forecast than without data assimilation.


2020 ◽  
Vol 12 (22) ◽  
pp. 3711
Author(s):  
Chih-Chien Tsai ◽  
Kao-Shen Chung

Based on the preciousness and uniqueness of polarimetric radar observations collected near the landfall of Typhoon Soudelor (2015), this study investigates the sensitivities of very short-range quantitative precipitation forecasts (QPFs) for this typhoon to polarimetric radar data assimilation. A series of experiments assimilating various combinations of radar variables are carried out for the purpose of improving a 6 h deterministic forecast for the most intense period. The results of the control simulation expose three sources of the observation operator errors, including the raindrop shape-size relation, the limitations for ice-phase hydrometeors, and the melting ice model. Nevertheless, polarimetric radar data assimilation with the unadjusted observation operator can still improve the analyses, especially rainwater, and consequent QPFs for this typhoon case. The different impacts of assimilating reflectivity, differential reflectivity, and specific differential phase are only distinguishable at the lower levels of convective precipitation areas where specific differential phase is found most helpful. The positive effect of radar data assimilation on QPFs can last three hours in this study, and further improvement can be expected by optimizing the observation operator in the future


Sign in / Sign up

Export Citation Format

Share Document