Rainfall variability and its association with El Niño Southern Oscillation in Tons River Basin, India

2017 ◽  
Vol 130 (4) ◽  
pp. 405-425 ◽  
Author(s):  
Darshana Duhan ◽  
Ashish Pandey ◽  
Puneet Srivastava
2005 ◽  
Vol 18 (22) ◽  
pp. 4840-4861 ◽  
Author(s):  
Tracy E. Twine ◽  
Christopher J. Kucharik ◽  
Jonathan A. Foley

Abstract Climatic and hydrologic observations and results from a terrestrial ecosystem model coupled to a regional-scale river-routing algorithm are used to document the associations between the El Niño–Southern Oscillation (ENSO) phenomenon and anomalies in climate, surface water balance, and river hydrology within the Mississippi River basin. While no ENSO signal is found in streamflow at the outlet of the basin in Vicksburg, Mississippi, significant anomalies in all water balance components are found in certain regions within the basin. ENSO is mainly associated with positive winter temperature anomalies, but hydrologic patterns vary with season, location, and ENSO phase. El Niño precipitation anomalies tend to affect evapotranspiration (ET) in the western half of the basin and runoff in the eastern half. La Niña events are associated with ET anomalies in the central portion of the basin and runoff anomalies in the southern and eastern portions of the basin. Both ENSO phases are associated with decreased snow depth. Anomalous soil moisture patterns occur at seasonal time scales and filter noisier spatial patterns of precipitation anomalies into coherent patterns with larger field significance; however, for all water budget components, there is a large amount of variability in response within a particular ENSO phase. With anomalies that are up to 4 times those of a typical event, it is clear that improved predictability of the onset and strength of an upcoming ENSO event is important for both water resource management and disaster mitigation.


2021 ◽  
pp. 1-42

Abstract Climate variabilities can have significant impacts on rainfall in East Africa, leading to disruption in natural and human systems and affecting the lives of tens of millions of people. Subseasonal and interannual variabilities are critical components of total rainfall variability in the region. The goal of this study is to examine the combined effects of the Madden Julian Oscillation (MJO), operating at subseasonal timescale, and the El Niño Southern Oscillation (ENSO), operating at an interannual scale, on the modulation of East African boreal fall (October-November-December; OND) rainfall, commonly called the short rains. Composite analysis shows that daily rainfall responses depend on MJO phase and its interaction with ENSO state. In particular, MJO modulation of rainfall is generally stronger under El Niño conditions relative to ENSO neutral and La Niña conditions, leading to increased potential for daily precipitation excesses during wet MJO phases under El Niño. There is evidence for both dynamic and thermodynamic mechanisms associated with these impacts, including an increase in westerly moisture transport and easterly advection of temperature and moist static energy. Seasonal analysis shows that the frequency and intensity of wet MJO phases during an El Niño contribute notably to the seasonal total precipitation anomaly. This suggests that MJO can mediate El Niño’s impact on OND rainfall in East Africa.


Sign in / Sign up

Export Citation Format

Share Document