Trend tests on maximum rainfall series by a novel approach in the Aegean region, Turkey

Author(s):  
Murat Ay
2013 ◽  
Vol 10 (2) ◽  
pp. 2323-2352 ◽  
Author(s):  
E. Arnone ◽  
D. Pumo ◽  
F. Viola ◽  
L. V. Noto ◽  
G. La Loggia

Abstract. Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles which can be used in many hydrological applications, such as design of the most common hydraulic structures, or planning and management of flood prone areas. In the past, Sicily has been screened for several signals of possible climate change. Annual, seasonal and monthly rainfall data in the entire Sicilian region have been analyzed, showing a global reduction of total annual rainfall. Moreover, annual maximum rainfall series for different durations have been rarely analyzed in order to detect the presence of trends. Results indicated that for short durations, historical series generally exhibit increasing trends while for longer durations the trends are mainly negative. Starting from these premises, the aim of this study is to investigate and quantify changes in rainfall statistics in Sicily, during the second half of the last century. Time series of about 60 stations over the region have been processed and screened by using the non parametric Mann–Kendall test. Particularly, extreme events have been analyzed using annual maximum rainfall series at 1, 3, 6, 12 and 24 h duration while daily rainfall properties have been analyzed in term of frequency and intensity, also characterizing seasonal rainfall features. Results of extreme events analysis confirmed an increasing trend for rainfall of short durations, especially for one hour rainfall duration. Instead, precipitation of long durations have exhibited a decreased trend. With regard to the spatial distribution, increase in short duration precipitation has been observed especially in stations located along the coastline; however, no clear and well-defined spatial pattern have been outlined by the results. Outcomes of analysis for daily rainfall properties have showed that heavy-torrential precipitation tends to be more frequent at regional scale, while light rainfall events exhibited a negative trend at some sites. Values of total annual precipitations confirmed a significant negative trend, mainly due to the reduction during the winter season.


2021 ◽  
Author(s):  
Zening Wu ◽  
Shifeng Liu ◽  
Huiliang Wang

Abstract The changing nature of the earth's climate and rapid urbanization lead to the change of rainfall characteristics in urban areas, and the stability of rainfall series is destroyed, it is a difficult challenge to consider this change in urban drainage simulation. A variety of methods are used to test the stationarity of annual maximum rainfall intensity series of Zhengzhou meteorological station from 1981 to 2010, and the intensity-duration-frequency (IDF) curves of changing environment are fitted by GAMLSS model and further generalized into short duration rainstorm intensity formula. The 3-hour design rainstorm in different scenarios was used as the input of Mike Flood model to simulate the operation of the campus drainage system of Zhengzhou University. Results indicated that: The rainfall series is non-stationary and has an increasing trend. Although the parameters of the short duration rainstorm intensity formula have no fixed change rules, there are traces to follow in the design rainstorm. According to Mike Flood model, the non-stationary scenario provides a series of dangerous signals such as more flood volume, larger inundation area, higher flood depth and slower recession process. The flood volume of the non-stationary scenario is 23.5% more than that of the stationary scenario, and the inundated area is 18.5% more when the return period is 5 years. In the future, the difference is 34.0% and 24.6% respectively, and it can reach more than 50% when the return period is once in two years. We will discuss the non-stationarity and challenges brought about by changing environments.


2013 ◽  
Vol 17 (7) ◽  
pp. 2449-2458 ◽  
Author(s):  
E. Arnone ◽  
D. Pumo ◽  
F. Viola ◽  
L. V. Noto ◽  
G. La Loggia

Abstract. Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles that can be used in many hydrological applications, such as design of the most common hydraulic structures, or planning and management of flood-prone areas. In the past, Sicily has been screened for several signals of possible climate change. Annual, seasonal and monthly rainfall data in the entire Sicilian region have been analyzed, showing a global reduction of total annual rainfall. Moreover, annual maximum rainfall series for different durations have been rarely analyzed in order to detect the presence of trends. Results indicated that for short durations, historical series generally exhibit increasing trends, while for longer durations the trends are mainly negative. Starting from these premises, the aim of this study is to investigate and quantify changes in rainfall statistics in Sicily, during the second half of the last century. Time series of about 60 stations over the region have been processed and screened by using the nonparametric Mann–Kendall test. In particular, extreme events have been analyzed using annual maximum rainfall series at 1, 3, 6, 12 and 24 h duration, while daily rainfall properties have been analyzed in terms of frequency and intensity, also characterizing seasonal rainfall features. Results of extreme events analysis confirmed an increasing trend for rainfall of short durations, especially for 1 h rainfall duration. Conversely, precipitation events of long durations have exhibited a decreased trend. Increase in short-duration precipitation has been observed especially in stations located along the coastline; however, no clear and well-defined spatial pattern has been outlined by the results. Outcomes of analysis for daily rainfall properties have showed that heavy–torrential precipitation events tend to be more frequent at regional scale, while light rainfall events exhibited a negative trend at some sites. Values of total annual precipitation events confirmed a significant negative trend, mainly due to the reduction during the winter season.


10.29007/m75f ◽  
2018 ◽  
Author(s):  
Maritza Arganis ◽  
Margarita Preciado ◽  
JesÚs Javier Cortes ◽  
Miguel Eduardo Gonzalez ◽  
VÍctor DamiÁn Pinilla

Lagrange interpolation was applied to complete maximum annual rainfall data for five weather stations in Aguascalientes, State of Mexico; in most of them there were no variations in the type of distribution function obtained; in general, an overestimation of the extrapolated data was identified for different return periods when the original records were not used.


2002 ◽  
Vol 45 (2) ◽  
pp. 63-68 ◽  
Author(s):  
M.D. Zalina ◽  
M.N.M. Desa ◽  
V-T-A. Nguyen ◽  
A.H.M. Kassim

This paper discusses the comparative assessment of eight candidate distributions in providing accurate and reliable maximum rainfall estimates for Malaysia. The models considered were the Gamma, Generalised Normal, Generalised Pareto, Generalised Extreme Value, Gumbel, Log Pearson Type III, Pearson Type III and Wakeby. Annual maximum rainfall series for one-hour resolution from a network of seventeen automatic gauging stations located throughout Peninsular Malaysia were selected for this study. The length of rainfall records varies from twenty-three to twenty-eight years. Model parameters were estimated using the L-moment method. The quantitative assessment of the descriptive ability of each model was based on the Probability Plot Correlation Coefficient test combined with root mean squared error, relative root mean squared error and maximum absolute deviation. Bootstrap resampling was employed to investigate the extrapolative ability of each distribution. On the basis of these comparisons, it can be concluded that the GEV distribution is the most appropriate distribution for describing the annual maximum rainfall series in Malaysia.


2002 ◽  
Vol 45 (2) ◽  
pp. 49-54 ◽  
Author(s):  
G. Aronica ◽  
M. Cannarozzo ◽  
L. Noto

The aim of this study is to investigate and quantify changes in the rainfall regime of the metropolitan area of Palermo characterised by increasingly strong urbanisation. The rainfall data, considered in this study, were collected on a yearly basis from eight rain gauges within and outside the metropolitan area of Palermo, Sicily, Italy. A preliminary analysis made on the annual total rainfall depths showed a global reduction of total annual rainfall, with two different trends: more regular for the series observed in the rain gauges within the urbanised area and more variable for the series observed in the rain gauges outside the area. A further analysis has been performed using the series of maximum intensity for fixed duration (1, 3, 6, 12, 24 hrs) and annual daily maxima. The analysis of the trend in the extreme rainfall series has been performed by estimating the maximum rainfall depth corresponding to a fixed return period using the EV1 distribution with parameters estimated using L-moments. The analysis of all series indicates a global reduction of rainfall intensities, both for internal and external series, in disagreement with the results obtained by other authors.


Sign in / Sign up

Export Citation Format

Share Document