Modeling dependence of solar radiation and sky clearness index using a bivariate copula

Author(s):  
Zaida Rahayu Yet ◽  
Nurulkamal Masseran
2018 ◽  
Vol 45 ◽  
pp. 139-145 ◽  
Author(s):  
Giannis Koudouris ◽  
Panayiotis Dimitriadis ◽  
Theano Iliopoulou ◽  
Nikos Mamassis ◽  
Demetris Koutsoyiannis

Abstract. Since the beginning of the 21st century, the scientific community has made huge leaps to exploit renewable energy sources, with solar radiation being one of the most important. However, the variability of solar radiation has a significant impact on solar energy conversion systems, such as in photovoltaic systems, characterized by a fast and non-linear response to incident solar radiation. The performance prediction of these systems is typically based on hourly or daily data because those are usually available at these time scales. The aim of this work is to investigate the stochastic nature and time evolution of the solar radiation process for daily and hourly scale, with the ultimate goal of creating a new cyclostationary stochastic model capable of reproducing the dependence structure and the marginal distribution of hourly solar radiation via the clearness index KT.


Author(s):  
Manuel Ibañez ◽  
William A. Beckman ◽  
Sanford A. Klein

Abstract The clearness index for hourly and daily radiation is an important parameter in describing solar radiation. Liu and Jordan demonstrated that the monthly average daily clearness index could be used to predict the long-term distribution of daily solar radiation in a month. This paper reviews recent literature on the prediction of hourly and daily frequency distributions and cumulative frequency distributions of clearness indices. Ten years of measured weather data for six cities in the US are used to investigate the nature of the hourly and daily frequency distributions. A second set of ten years of data for six cities is used to verify the predictions. A bi-exponential probability density function is proposed that fits the observed bimodal nature of the data better than existing models. A case is made for the function being universal.


2016 ◽  
Vol 12 ◽  
pp. 441-444
Author(s):  
M. Tanweer ◽  
◽  
Firoz Ahmad ◽  
Zaheer Uddin ◽  
Saif Rehman ◽  
...  

2001 ◽  
Vol 124 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Manuel Iban˜ez ◽  
William A. Beckman ◽  
Sanford A. Klein

The clearness index for hourly and daily radiation is an important parameter in describing solar radiation. Liu and Jordan demonstrated that the monthly average daily clearness index could be used to predict the long-term distribution of daily solar radiation in a month. This paper reviews recent literature on the prediction of hourly and daily frequency distributions and cumulative frequency distributions of clearness indices. Ten years of measured weather data for six cities in the U.S. are used to investigate the nature of the hourly and daily frequency distributions. A second set of ten years of data for six cities is used to verify the predictions. A bi-exponential probability density function is proposed that fits the observed bimodal nature of the data better than existing models. A case is made for the function being universal.


2020 ◽  
pp. 45-52
Author(s):  
Prakash M. Shrestha ◽  
Jeevan Regmi ◽  
Usha Joshi ◽  
Khem N. Poudyal ◽  
Narayan P. Chapagain ◽  
...  

Solar radiation data are of great significance for solar energy systems. This study aimed to estimate monthly and seasonal average of daily global solar radiation on a horizontal surface in Pokhara (Lat.:28.21o N, Long.: 84o E and alt. 827 m above sea level), Nepal, by using CMP6 pyranometer in 2015. As a result of this measurement, monthly and yearly mean solar radiation values were 20.37 ±5.62 MJ/m2/ day in May, 11.37 ± 2.38 MJ/m2/ day in December and 16.82 ±5.24 MJ/m2/ day respectively. Annual average of clearness index and extinction coefficient are 0.51±0.14 and 0.53±0.31 respectively. There is positive correlation of maximum temperature and negative correlation of with global solar radiation.


Sign in / Sign up

Export Citation Format

Share Document