Statistical downscaling of regional climate models in Bulgarian mountains and some projections

2014 ◽  
Vol 119 (1-2) ◽  
pp. 83-98
Author(s):  
Peter Nojarov
2017 ◽  
Vol 30 (1) ◽  
pp. 203-223 ◽  
Author(s):  
D. San-Martín ◽  
R. Manzanas ◽  
S. Brands ◽  
S. Herrera ◽  
J. M. Gutiérrez

This is the second in a pair of papers in which the performance of statistical downscaling methods (SDMs) is critically reassessed with respect to their robust applicability in climate change studies. Whereas the companion paper focused on temperatures, the present manuscript deals with precipitation and considers an ensemble of 12 SDMs from the analog, weather typing, and regression families. First, the performance of the methods is cross-validated considering reanalysis predictors, screening different geographical domains and predictor sets. Standard accuracy and distributional similarity scores and a test for extrapolation capability are considered. The results are highly dependent on the predictor sets, with optimum configurations including information from midtropospheric humidity. Second, a reduced ensemble of well-performing SDMs is applied to four GCMs to properly assess the uncertainty of downscaled future climate projections. The results are compared with an ensemble of regional climate models (RCMs) produced in the ENSEMBLES project. Generally, the mean signal is similar with both methodologies (with the exception of summer, which is drier for the RCMs) but the uncertainty (spread) is larger for the SDM ensemble. Finally, the spread contribution of the GCM- and SDM-derived components is assessed using a simple analysis of variance previously applied to the RCMs, obtaining larger interaction terms. Results show that the main contributor to the spread is the choice of the GCM, although the SDM dominates the uncertainty in some cases during autumn and summer due to the diverging projections from different families.


2020 ◽  
Author(s):  
Swati Singh ◽  
Kaustubh Salvi ◽  
Subimal Ghosh ◽  
Subhankar Karmakar

<p>The downscaling approaches: Statistical and Dynamic, developed for regional climate predictions, have both advantages and limitations. The statistical downscaling is computationally inexpensive but suffers from the violation of the assumption of stationarity in statistical (predictor-predictand) relationship. The dynamical downscaling is assumed to take care of stationarity but suffers from the biases associated with various sources.  Here we propose a joint approach of both the methods by applying statistical methods: bias correction & statistical downscaling to <strong>Coordinated Regional Climate Downscaling Experiment (</strong>CORDEX) evaluation runs. The evaluation runs are considered as perfect simulations of CORDEX Regional Climate Models (RCMs) with the boundary conditions by ERA-Interim reanalysis data. The statistical methods are also applied to ERA-Interim reanalysis data and compared with observation data for Indian Summer Monsoon characteristics. We evaluate the ability of statistical methods under the non-stationary environment by taking the difference of years close to extreme future runs (RCP8.5) as warmer years and preindustrial runs as cooler years. We find statistical downscaling of CORDEX evaluation runs shows skill in reproducing the signal of non-stationarity. The study can be extended methods by applying statistical downscaling to CORDEX RCMs with the CMIP5 boundary conditions. </p>


Author(s):  
Aristita Busuioc ◽  
Alexandru Dumitrescu

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Climate Science. Please check back later for the full article.The concept of statistical downscaling or empirical-statistical downscaling became a distinct and important scientific approach in climate science in recent decades, when the climate change issue and assessment of climate change impact on various social and natural systems have become international challenges. Global climate models are the best tools for estimating future climate conditions. Even if improvements can be made in state-of-the art global climate models, in terms of spatial resolution and their performance in simulation of climate characteristics, they are still skillful only in reproducing large-scale feature of climate variability, such as global mean temperature or various circulation patterns (e.g., the North Atlantic Oscillation). However, these models are not able to provide reliable information on local climate characteristics (mean temperature, total precipitation), especially on extreme weather and climate events. The main reason for this failure is the influence of local geographical features on the local climate, as well as other factors related to surrounding large-scale conditions, the influence of which cannot be correctly taken into consideration by the current dynamical global models.Impact models, such as hydrological and crop models, need high resolution information on various climate parameters on the scale of a river basin or a farm, scales that are not available from the usual global climate models. Downscaling techniques produce regional climate information on finer scale, from global climate change scenarios, based on the assumption that there is a systematic link between the large-scale and local climate. Two types of downscaling approaches are known: a) dynamical downscaling is based on regional climate models nested in a global climate model; and b) statistical downscaling is based on developing statistical relationships between large-scale atmospheric variables (predictors), available from global climate models, and observed local-scale variables of interest (predictands).Various types of empirical-statistical downscaling approaches can be placed approximately in linear and nonlinear groupings. The empirical-statistical downscaling techniques focus more on details related to the nonlinear models—their validation, strengths, and weaknesses—in comparison to linear models or the mixed models combining the linear and nonlinear approaches. Stochastic models can be applied to daily and sub-daily precipitation in Romania, with a comparison to dynamical downscaling. Conditional stochastic models are generally specific for daily or sub-daily precipitation as predictand.A complex validation of the nonlinear statistical downscaling models, selection of the large-scale predictors, model ability to reproduce historical trends, extreme events, and the uncertainty related to future downscaled changes are important issues. A better estimation of the uncertainty related to downscaled climate change projections can be achieved by using ensembles of more global climate models as drivers, including their ability to simulate the input in downscaling models. Comparison between future statistical downscaled climate signals and those derived from dynamical downscaling driven by the same global model, including a complex validation of the regional climate models, gives a measure of the reliability of downscaled regional climate changes.


2003 ◽  
Vol 34 (5) ◽  
pp. 399-412 ◽  
Author(s):  
M. Rummukainen ◽  
J. Räisänen ◽  
D. Bjørge ◽  
J.H. Christensen ◽  
O.B. Christensen ◽  
...  

According to global climate projections, a substantial global climate change will occur during the next decades, under the assumption of continuous anthropogenic climate forcing. Global models, although fundamental in simulating the response of the climate system to anthropogenic forcing are typically geographically too coarse to well represent many regional or local features. In the Nordic region, climate studies are conducted in each of the Nordic countries to prepare regional climate projections with more detail than in global ones. Results so far indicate larger temperature changes in the Nordic region than in the global mean, regional increases and decreases in net precipitation, longer growing season, shorter snow season etc. These in turn affect runoff, snowpack, groundwater, soil frost and moisture, and thus hydropower production potential, flooding risks etc. Regional climate models do not yet fully incorporate hydrology. Water resources studies are carried out off-line using hydrological models. This requires archived meteorological output from climate models. This paper discusses Nordic regional climate scenarios for use in regional water resources studies. Potential end-users of water resources scenarios are the hydropower industry, dam safety instances and planners of other lasting infrastructure exposed to precipitation, river flows and flooding.


2021 ◽  
Author(s):  
Kelly Mahoney ◽  
James D. Scott ◽  
Michael Alexander ◽  
Rachel McCrary ◽  
Mimi Hughes ◽  
...  

AbstractUnderstanding future precipitation changes is critical for water supply and flood risk applications in the western United States. The North American COordinated Regional Downscaling EXperiment (NA-CORDEX) matrix of global and regional climate models at multiple resolutions (~ 50-km and 25-km grid spacings) is used to evaluate mean monthly precipitation, extreme daily precipitation, and snow water equivalent (SWE) over the western United States, with a sub-regional focus on California. Results indicate significant model spread in mean monthly precipitation in several key water-sensitive areas in both historical and future projections, but suggest model agreement on increasing daily extreme precipitation magnitudes, decreasing seasonal snowpack, and a shortening of the wet season in California in particular. While the beginning and end of the California cool season are projected to dry according to most models, the core of the cool season (December, January, February) shows an overall wetter projected change pattern. Daily cool-season precipitation extremes generally increase for most models, particularly in California in the mid-winter months. Finally, a marked projected decrease in future seasonal SWE is found across all models, accompanied by earlier dates of maximum seasonal SWE, and thus a shortening of the period of snow cover as well. Results are discussed in the context of how the diverse model membership and variable resolutions offered by the NA-CORDEX ensemble can be best leveraged by stakeholders faced with future water planning challenges.


Sign in / Sign up

Export Citation Format

Share Document