Contributions of climate change and human activities to runoff and sediment discharge reductions in the Jialing River, a main tributary of the upper Yangtze River, China

Author(s):  
Yiting Shao ◽  
Yi He ◽  
Xingmin Mu ◽  
Guangju Zhao ◽  
Peng Gao ◽  
...  
2018 ◽  
Vol 34 (6) ◽  
pp. 1373-1375
Author(s):  
Fubin Zhang ◽  
Xiaoqin Xiong ◽  
Naicheng Wu ◽  
Yu Zeng ◽  
Nicola Fohrer

2020 ◽  
Vol 12 (1) ◽  
pp. 387-402
Author(s):  
Chao Gao ◽  
Buda Su ◽  
Valentina Krysanova ◽  
Qianyu Zha ◽  
Cai Chen ◽  
...  

Abstract. The outputs of four global climate models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5), which were statistically downscaled and bias corrected, were used to drive four hydrological models (Hydrologiska Byråns, HBV; Soil and Water Assessment Tool, SWAT; Soil and Water Integrated Model, SWIM; and Variable Infiltration Capacity, VIC) to simulate the daily discharge at the Cuntan hydrological station in the upper Yangtze River from 1861 to 2299. As the performances of hydrological models in various climate conditions could be different, the models were first calibrated in the period from 1979 to 1990. Then, the models were validated in the comparatively wet period, 1967–1978, and in the comparatively dry period, 1991–2002. A multi-objective automatic calibration programme using a univariate search technique was applied to find the optimal parameter set for each of the four hydrological models. The Nash–Sutcliffe efficiency (NSE) of daily discharge and the weighted least-squares function (WLS) of extreme discharge events, represented by high flow (Q10) and low flow (Q90), were included in the objective functions of the parameterization process. In addition, the simulated evapotranspiration results were compared with the GLEAM evapotranspiration data for the upper Yangtze River basin. For evaluating the performances of the hydrological models, the NSE, modified Kling–Gupta efficiency (KGE), ratio of the root-mean-square error to the standard deviation of the measured data (RSR) and Pearson's correlation coefficient (r) were used. The four hydrological models reach satisfactory simulation results in both the calibration and validation periods. In this study, the daily discharge is simulated for the upper Yangtze River under the preindustrial control (piControl) scenario without anthropogenic climate change from 1861 to 2299 and for the historical period 1861–2005 and for 2006 to 2299 under the RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenarios. The long-term daily discharge dataset can be used in the international context and water management, e.g. in the framework of Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) by providing clues to what extent human-induced climate change could impact streamflow and streamflow trend in the future. The datasets are available at: https://doi.org/10.4121/uuid:8658b22a-8f98-4043-9f8f-d77684d58cbc (Gao et al., 2019).


2016 ◽  
Vol 141 (3) ◽  
pp. 533-546 ◽  
Author(s):  
Buda Su ◽  
Jinlong Huang ◽  
Xiaofan Zeng ◽  
Chao Gao ◽  
Tong Jiang

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yuqian Wang ◽  
Xiaoli Yang ◽  
Mengru Zhang ◽  
Linqi Zhang ◽  
Xiaohan Yu ◽  
...  

Climate change directly impacts the hydrological cycle via increasing temperatures and seasonal precipitation shifts, which are variable at local scales. The water resources of the Upper Yangtze River Basin (UYRB) account for almost 40% and 15% of all water resources used in the Yangtze Basin and China, respectively. Future climate change and the possible responses of surface runoff in this region are urgent issues for China’s water security and sustainable socioeconomic development. This study evaluated the potential impacts of future climate change on the hydrological regimes (high flow (Q5), low flow (Q95), and mean annual runoff (MAR)) of the UYRB using global climate models (GCMs) and a variable infiltration capacity (VIC) model. We used the eight bias-corrected GCM outputs from Phase 5 of the Coupled Model Intercomparison Project (CMIP5) to examine the effects of climate change under two future representative concentration pathways (RCP4.5 and RCP8.5). The direct variance method was adopted to analyze the contributions of precipitation and temperature to future Q5, Q95, and MAR. The results showed that the equidistant cumulative distribution function (EDCDF) can considerably reduce biases in the temperature and precipitation fields of CMIP5 models and that the EDCDF captured the extreme values and spatial pattern of the climate fields. Relative to the baseline period (1961–1990), precipitation is projected to slightly increase in the future, while temperature is projected to considerably increase. Furthermore, Q5, Q95, and MAR are projected to decrease. The projected decreases in the median value of Q95 were 21.08% to 24.88% and 16.05% to 26.70% under RCP4.5 and RCP8.5, respectively; these decreases were larger than those of MAR and Q5. Temperature increases accounted for more than 99% of the projected changes, whereas precipitation had limited projected effects on Q95 and MAR. These results indicate the drought risk over the UYRB will increase considerably in the future.


2022 ◽  
Vol 170 (1-2) ◽  
Author(s):  
Pengcheng Qin ◽  
Hongmei Xu ◽  
Min Liu ◽  
Lüliu Liu ◽  
Chan Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document