scholarly journals Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China

2020 ◽  
Vol 163 (3) ◽  
pp. 1207-1226 ◽  
Author(s):  
Shanshan Wen ◽  
Buda Su ◽  
Yanjun Wang ◽  
Jianqing Zhai ◽  
Hemin Sun ◽  
...  
2020 ◽  
Vol 12 (1) ◽  
pp. 387-402
Author(s):  
Chao Gao ◽  
Buda Su ◽  
Valentina Krysanova ◽  
Qianyu Zha ◽  
Cai Chen ◽  
...  

Abstract. The outputs of four global climate models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5), which were statistically downscaled and bias corrected, were used to drive four hydrological models (Hydrologiska Byråns, HBV; Soil and Water Assessment Tool, SWAT; Soil and Water Integrated Model, SWIM; and Variable Infiltration Capacity, VIC) to simulate the daily discharge at the Cuntan hydrological station in the upper Yangtze River from 1861 to 2299. As the performances of hydrological models in various climate conditions could be different, the models were first calibrated in the period from 1979 to 1990. Then, the models were validated in the comparatively wet period, 1967–1978, and in the comparatively dry period, 1991–2002. A multi-objective automatic calibration programme using a univariate search technique was applied to find the optimal parameter set for each of the four hydrological models. The Nash–Sutcliffe efficiency (NSE) of daily discharge and the weighted least-squares function (WLS) of extreme discharge events, represented by high flow (Q10) and low flow (Q90), were included in the objective functions of the parameterization process. In addition, the simulated evapotranspiration results were compared with the GLEAM evapotranspiration data for the upper Yangtze River basin. For evaluating the performances of the hydrological models, the NSE, modified Kling–Gupta efficiency (KGE), ratio of the root-mean-square error to the standard deviation of the measured data (RSR) and Pearson's correlation coefficient (r) were used. The four hydrological models reach satisfactory simulation results in both the calibration and validation periods. In this study, the daily discharge is simulated for the upper Yangtze River under the preindustrial control (piControl) scenario without anthropogenic climate change from 1861 to 2299 and for the historical period 1861–2005 and for 2006 to 2299 under the RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenarios. The long-term daily discharge dataset can be used in the international context and water management, e.g. in the framework of Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) by providing clues to what extent human-induced climate change could impact streamflow and streamflow trend in the future. The datasets are available at: https://doi.org/10.4121/uuid:8658b22a-8f98-4043-9f8f-d77684d58cbc (Gao et al., 2019).


2016 ◽  
Vol 141 (3) ◽  
pp. 533-546 ◽  
Author(s):  
Buda Su ◽  
Jinlong Huang ◽  
Xiaofan Zeng ◽  
Chao Gao ◽  
Tong Jiang

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yuqian Wang ◽  
Xiaoli Yang ◽  
Mengru Zhang ◽  
Linqi Zhang ◽  
Xiaohan Yu ◽  
...  

Climate change directly impacts the hydrological cycle via increasing temperatures and seasonal precipitation shifts, which are variable at local scales. The water resources of the Upper Yangtze River Basin (UYRB) account for almost 40% and 15% of all water resources used in the Yangtze Basin and China, respectively. Future climate change and the possible responses of surface runoff in this region are urgent issues for China’s water security and sustainable socioeconomic development. This study evaluated the potential impacts of future climate change on the hydrological regimes (high flow (Q5), low flow (Q95), and mean annual runoff (MAR)) of the UYRB using global climate models (GCMs) and a variable infiltration capacity (VIC) model. We used the eight bias-corrected GCM outputs from Phase 5 of the Coupled Model Intercomparison Project (CMIP5) to examine the effects of climate change under two future representative concentration pathways (RCP4.5 and RCP8.5). The direct variance method was adopted to analyze the contributions of precipitation and temperature to future Q5, Q95, and MAR. The results showed that the equidistant cumulative distribution function (EDCDF) can considerably reduce biases in the temperature and precipitation fields of CMIP5 models and that the EDCDF captured the extreme values and spatial pattern of the climate fields. Relative to the baseline period (1961–1990), precipitation is projected to slightly increase in the future, while temperature is projected to considerably increase. Furthermore, Q5, Q95, and MAR are projected to decrease. The projected decreases in the median value of Q95 were 21.08% to 24.88% and 16.05% to 26.70% under RCP4.5 and RCP8.5, respectively; these decreases were larger than those of MAR and Q5. Temperature increases accounted for more than 99% of the projected changes, whereas precipitation had limited projected effects on Q95 and MAR. These results indicate the drought risk over the UYRB will increase considerably in the future.


2020 ◽  
Vol 12 (1) ◽  
pp. 629-645 ◽  
Author(s):  
Zilefac Elvis Asong ◽  
Mohamed Ezzat Elshamy ◽  
Daniel Princz ◽  
Howard Simon Wheater ◽  
John Willard Pomeroy ◽  
...  

Abstract. Cold region hydrology is very sensitive to the impacts of climate warming. Impacts of warming over recent decades in western Canada include glacier retreat, permafrost thaw, and changing patterns of precipitation, with an increased proportion of winter precipitation falling as rainfall and shorter durations of snow cover, as well as consequent changes in flow regimes. Future warming is expected to continue along these lines. Physically realistic and sophisticated hydrological models driven by reliable climate forcing can provide the capability to assess hydrological responses to climate change. However, the provision of reliable forcing data remains problematic, particularly in data-sparse regions. Hydrological processes in cold regions involve complex phase changes and so are very sensitive to small biases in the driving meteorology, particularly in temperature and precipitation, including precipitation phase. Cold regions often have sparse surface observations, particularly at high elevations that generate a large amount of runoff. This paper aims to provide an improved set of forcing data for large-scale hydrological models for climate change impact assessment. The best available gridded data in Canada are from the high-resolution forecasts of the Global Environmental Multiscale (GEM) atmospheric model and outputs of the Canadian Precipitation Analysis (CaPA), but these datasets have a short historical record. The EU WATCH ERA-Interim reanalysis (WFDEI) has a longer historical record but has often been found to be biased relative to observations over Canada. The aim of this study, therefore, is to blend the strengths of both datasets (GEM-CaPA and WFDEI) to produce a less-biased long-record product (WFDEI-GEM-CaPA) for hydrological modelling and climate change impact assessment over the Mackenzie River Basin. First, a multivariate generalization of the quantile mapping technique was implemented to bias-correct WFDEI against GEM-CaPA at 3 h ×0.125∘ resolution during the 2005–2016 overlap period, followed by a hindcast of WFDEI-GEM-CaPA from 1979. The derived WFDEI-GEM-CaPA data are validated against station observations as a preliminary step to assess their added value. This product is then used to bias-correct climate projections from the Canadian Centre for Climate Modelling and Analysis Canadian Regional Climate Model (CanRCM4) between 1950 and 2100 under RCP8.5, and an analysis of the datasets shows that the biases in the original WFDEI product have been removed and the climate change signals in CanRCM4 are preserved. The resulting bias-corrected datasets are a consistent set of historical and climate projection data suitable for large-scale modelling and future climate scenario analysis. The final historical product (WFDEI-GEM-CaPA, 1979–2016) is freely available at the Federated Research Data Repository at https://doi.org/10.20383/101.0111 (Asong et al., 2018), while the original and corrected CanRCM4 data are available at https://doi.org/10.20383/101.0162 (Asong et al., 2019).


2022 ◽  
Vol 170 (1-2) ◽  
Author(s):  
Pengcheng Qin ◽  
Hongmei Xu ◽  
Min Liu ◽  
Lüliu Liu ◽  
Chan Xiao ◽  
...  

2019 ◽  
Vol 11 (19) ◽  
pp. 5300
Author(s):  
Pei Xu ◽  
Yingman Guo ◽  
Bin Fu

Water retention is an important factor in ecosystem services, owing to its relationships with climate and land-cover change; however, quantifying the independent and combined impacts of these variables remains a challenge. We use scenario analysis and the InVEST model to assess individual or combined impacts of climate and land cover on water retention in the Upper Yangtze River Basin. Water retention decreased from 1986 to 2015 at a rate of 2.97 mm/10a in response to increasing precipitation (3.94 mm/10a) and potential evapotranspiration (16.47 mm/10a). The rate of water retention change showed regional variability (from 68 to −18 mm/a), with some eastern regions experiencing an increase and most other regions experiencing a decrease. Farmland showed the highest decrease (10,772 km2), with land mainly converted into forest (58.17%) and shrub land (21.13%) from 2000 to 2015. The impact of climate change (−12.02 mm) on water retention generally was greater than the impact of land cover change (−4.14 mm), at the basin scale. Among 22 climate zones, 77.27% primarily were impacted by climate change; 22.73% primarily were impacted by land cover change. Our results demonstrate that both individualistic and integrated approaches toward climate and vegetation management is necessary to mitigate the impacts of climate change on water resources.


2019 ◽  
Author(s):  
Chao Gao ◽  
Buda Su ◽  
Valentina Krysanova ◽  
Qianyu Zha ◽  
Cai Chen ◽  
...  

Abstract. The outputs of four Global Climate Models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5), which were statistically downscaled and bias corrected, were used to drive four hydrological models (HBV, SWAT, SWIM and VIC) to simulate the daily discharge at the Cuntan hydrological station in the upper Yangtze River from 1861 to 2299. As the performances of hydrological models in various climate conditions could be different, the models were first calibrated in the period from 1979 to 1990. Then, the models were validated in the wet period, 1967–1978, and in the dry period, 1991–2002. A multi-objective automatic calibration programme using a univariate search technique was applied to find the optimal parameter sets for each of the four hydrological models. The Nash-Sutcliffe efficiency (NSE) of daily discharge and the weighted least squares function (WLS) of extreme discharge events, represented by high flow (Q10) and low flow (Q90), were included in the objective functions of the parameterization process. In addition, the simulated evapotranspiration results were compared with evapotranspiration data from the GLEAM project for the upper Yangtze basin. For evaluating the performances of the hydrological models, the NSE, modified Kling-Gupta efficiency (KGE), ratio of the root mean square error to the standard deviation of the measured data (RSR) and Pearson's correlation coefficient (r) were used. The four hydrological models showed good performance in the calibration and validation periods. In this study, the daily runoff was simulated for the upper Yangtze River under the preindustrial control (piControl) scenario without anthropogenic climate change, from 1861–2299, for the historical period 1861–2005, and under the RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenarios in the period from 2006 to 2299. The long-term daily discharge datasets for the upper Yangtze River provide streamflow trends in the future and clues regarding to what extent human-induced climate change could impact streamflow. The datasets are available at the https://doi.org/10.4121/uuid:8658b22a-8f98-4043-9f8f-d77684d58cbc website.


Sign in / Sign up

Export Citation Format

Share Document